Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
A methodology to assess suitability of a site for small scale wet and dry CSP systems
Date
2015-06-25
Author
Uzgoren, Eray
Timur, Eray
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
This study presents a methodology to assess suitability of a site for small scale concentrated solar power (CSP) systems for its energy conversion efficiency and make-up water requirement. Energy conversion efficiency of CSPs relies not only on the level of direct solar radiation but also on the performance of the cooling system. Regions with high solar potential have to deal with heat rejection at elevated temperatures which causes reduced energy conversion efficiencies due to high condenser temperatures. It is desirable to utilize wet cooling systems as they can achieve temperatures lower than the dry bulb temperature by evaporative cooling. On the other hand, such regions usually lack water resources which deteriorate the sustainable nature of CSP applications. This study combines various available models for both solar resource estimation and cooling systems' performance considering (i) the influence of ambient temperatures, and (ii) the influence of humidity levels. These models are integrated together to analyze the use of dry or wet cooling systems in terms of overall energy output and water consumption at a selected site in northern Cyprus. The model inputs consist of only annual hourly surface weather data and the location of the site of interest. The results show that dry cooling unit at northern Cyprus is capable of saving water about 18.7ton/MWh while it produces 27% less energy compared to the wet cooling alternative for the representative annual weather data. Copyright (c) 2015 John Wiley & Sons, Ltd.
Subject Keywords
Solar resource assessment
,
System level simulations
,
Concentrated solar power systems
,
Organic Rankine cycle
,
Dry cooling
,
Parabolic trough collectors
,
Make-up water
,
Wet tower
URI
https://hdl.handle.net/11511/66174
Journal
INTERNATIONAL JOURNAL OF ENERGY RESEARCH
DOI
https://doi.org/10.1002/er.3314
Collections
Engineering, Article