Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design of Fuel Cell and Electrolyzer Emulators for Photovoltaic Applications
Date
2011-09-10
Author
Koubaa, Ahmed
Krichen, Lotfi
Ouali, Abderrazak
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
192
views
0
downloads
Cite This
This paper focuses on the design of fuel cell and electrolyzer emulators used for photovoltaic applications. These emulators are based on power electronic circuits. The reference values of the two emulators are taken from fuel cell and electrolyzer mathematical models. In this study, proportional integral regulators are used. A power management is established to ensure a balance between production and consumption. The simulation results show the good performances of the two emulators to produce the electrical behaviors as well as real systems.
Subject Keywords
Fuel cell
,
Electrolyzer
,
Emulator
,
Photovoltaic application
,
Power management
URI
https://hdl.handle.net/11511/66187
Collections
Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Design and implementation of a sic based three phase grid-connected current source inverter for solar applications
Bay, Olcay; Ermiş, Muammer; Bilgin, Hazım Faruk; Department of Electrical and Electronics Engineering (2017)
In this thesis, analysis, design and implementation of a three-phase 400V, 20 kVA Current Source Inverter (CSI) have been carried out for grid-connected photovoltaic applications based on the multi-string inverter concept. This inverter can be used in large scale photovoltaic (PV) applications by connecting many in parallel at 400V and coupling to medium voltage through a common transformer. The power stage of the inverter is based on the basic full-bridge CSC topology and each power semiconductor which mus...
Development of a high yield fabrication process for MEMS based resonant mass sensors for cell detection applications
Töral, Taylan Berkin; Külah, Haluk; Department of Micro and Nanotechnology (2014)
This thesis reports the development of a high yield fabrication flow for MEMS based resonant mass sensors for cell detection applications. The basic design is a gravimetric resonator for real-time electronic detection of captured cells through bioactivation on gold coated active area which assures an antibody based cell capture inside a biocompatible microfluidic channel. The proposed design is demonstrated to have various advantages over its conventional counterparts. However, the yield of the previous fab...
Numerical investigation of a stand alone solar hydrogen energy system effects of PEFC degradation
Ender, Ozden; Tarı, İlker (null; 2015-08-12)
An existing stand-alone solar energy system producing hydrogen for energy storage is numerically investigated focusing on the degradation of Polymer Electrolyte Fuel Cell (PEFC) and its effects on the overall performance of the system. The system consists of Photovoltaic (PV) panels, polymer electrolyte based electrolyzers, H2 and O2 storage tanks and a commercial PEFC stack. A PEFC is numerically investigated both as new and as degraded (for about two years). Using a variety of observed degradation pattern...
Development of resonant mass sensors for MEMS based real time cell detection applications
Kangül, Mustafa; Külah, Haluk; Department of Electrical and Electronics Engineering (2015)
This thesis represents design and implementation of MEMS based resonant mass sensors for cell detection applications. The main objective of the thesis is real-time detection inside liquid medium and obtaining the results by electronic means, without the assistance of bulky optical instruments. Novel resonant based mass sensor architectures that have various improvements over selected benchmark design are presented. Purpose of the new structures is to establish real-time mass detection by improving the quali...
Design Studies of Axial Vircator for High Power Microwave Generation
KÜÇÜK, İBRAHİM SEMİH; TİMUR, BÜŞRA; Tanc, Zafer; Demir, Şimşek (2017-09-27)
This paper presents design and simulation results of the cylindrical axial virtual cathode oscillator which is frequently used to damage electronic equipment by generating High Power Microwaves (HPM). Simulations are performed in MAGIC Tool Suite which uses FDTD-PIC algorithm to solve particle beam and field interactions. During the design procedure, AK Gap is changed from 5 mm to 12 mm and the scaling law is verified by simulation results. 9 mm AK gap values are selected as the most suitable one when outpu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Koubaa, L. Krichen, and A. Ouali, “Design of Fuel Cell and Electrolyzer Emulators for Photovoltaic Applications,” 2011, p. 687, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66187.