Situation Aware UAV Mission Route Planning

2009-03-14
Tulum, Kamil
Durak, Umut
Ider, S. Kemal
This paper outlines an agent based approach for UAV (Unmanned Air Vehicles) mission route planning problem. In this context, mission route planning can be defined as finding the "best" set of waypoints for the UAV that will enhance its probability of success in its mission. Mission route planning may be carried out either in premission or in mission time. It may be done either by an onboard control system or by a ground mission planning system. Regardless of these considerations, a problem solving agent for UAV mission route planning problem is proposed in this research. Mission Route Planning Agent in UAV mission route planning context needs to perceive the elements in its environment and comprehend the meaning of this situation to compute a route. In other words, it will use target, threat, terrain and air space restrictions to compute the "best" route for that UAV mission. In a dynamic re-planning environment, it will compute its new route again and again each time the situation has changed. To compute the "best" route, an A* based graph search algorithm is used. For a node, while real cost is computed using fuel and threat costs with determined weightings, heuristic cost is selected as the geometric distance. Network is constructed in the search time. Consecutive nodes are determined by spanning range and azimuth with determined increments. The values of weightings for fuel and threat costs and the increments used to construct the network have a great effect on the resulting route and the computation time. While common practice is to use default or user defined values for those, this paper presents a situation aware UAV Mission Route Planning Agent that uses the tactical situation to determine these values.(12)

Suggestions

UAV routing for reconnaissance mission: A multi-objective orienteering problem with time-dependent prizes and multiple connections
Dasdemir, Erdi; Batta, Rajan; Köksalan, Mustafa Murat; TEZCANER ÖZTÜRK, DİCLEHAN (2022-09-01)
© 2022 Elsevier LtdWe address the route planning problem of an unmanned air vehicle (UAV) tasked with collecting information from a radar-monitored environment for a reconnaissance mission. The UAV takes off from a home base, visits a set of targets, and finishes its movement at a final base. Collectable information at a target depends on the time the target is visited by the UAV. There are multiple trajectory alternatives between the target pairs with different travel time and threat attributes. A route pl...
Interactive approaches for bi-objective UAV route planning in continuous space
Türeci, Hannan; Köksalan, Murat; Tezcaner Öztürk, Diclehan; Department of Industrial Engineering (2017)
We study the route planning problem of unmanned air vehicles (UAVs). We consider two objectives; minimizing total distance traveled and minimizing total radar detection threat since these objectives cover most of the other related factors. We consider routing in a two-dimensional continuous terrain, in which we have infinitely many efficient trajectories between target pairs. We develop interactive algorithms that find the most preferred solution of a route planner (RP), who has either of the underlying pre...
Coordinated guidance for multiple UAVs
Cakici, Ferit; Ergezer, Halit; Irmak, Ufuk; Leblebicioğlu, Mehmet Kemal (2016-05-01)
This paper addresses the path planning problem of multiple unmanned aerial vehicles (UAVs). The paths are planned to maximize collected amount of information from desired regions (DRs), while avoiding forbidden regions (FRs) and reaching the destination. This study focuses on maximizing collected information instead of minimizing total mission time, as in previous studies. The problem is solved by a genetic algorithm (GA) with the proposal of novel evolutionary operators. The initial populations are generat...
Route planning for unmanned air vehicles
Tulum, Kamil; İder, S. Kemal; Department of Mechanical Engineering (2009)
In this thesis, automatic routing technologies for unmanned air vehicles are investigated. A route planner that minimizes the fuel consumption and maximizes the survivability is developed. While planning the route, using more than one objective entails the auto-routing problem to multi-objective optimization considerations. In this work, these considerations are handled with search algorithms. In order to assess the route options, a fuel consumption model and a survivability model are utilized for the route...
Transfer Learning-Based Crack Detection by AutonomousUAVs
Küçüksubaşı, Fatih; Sorguç, Arzu (2018-07-20)
Unmanned Aerial Vehicles (UAVs) have recently shown great performance collecting visual data through autonomous exploration and mapping in building inspection. Yet, the number of studies is limited considering the post processing of the data and its integration with autonomous UAVs. These will enable huge steps onward into full automation of building inspection. In this regard, this work presents a decision making tool for revisiting tasks in visual building inspection by autonomous UAVs. The tool is an imp...
Citation Formats
K. Tulum, U. Durak, and S. K. Ider, “Situation Aware UAV Mission Route Planning,” 2009, p. 2971, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66193.