Excitation spectrum of Hubbard model with infinite electron repulsion on strip-type triangular lattices

2001-02-05
Cheranovskii, VO
Ezerskaya, EV
Krikunov, MV
The estimations of the stability region of the lattice ferromagnetic ground state in the space of model parameters are found. For the triangular lattice strip formed by L segments with the total number of electrons N = L + 1 we derived the effective Hamiltonians describing the low-energy states of the strips and obtained the analytical estimations for above stability region. The possibility of the magnetic transition with the jump of the ground-state spin between minimal and maximal values has also been shown. For the strip with N = L and an alternating value of the one-site potential energy, we have obtained the exact relation between electron parameters, which provides the ferromagnetic character of the lattice ground state. (C) 2001 John Wiley & Sons, Inc.
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY

Suggestions

Radial motion of highly conducting sphere in magnetic field
Gurcan, OD; Mirnov, VV; Ucer, D (2000-05-01)
Radial motion of a highly conducting sphere in external magnetic field is considered. It both perturbs the external magnetic field and generates an electric field. Exact analytic solution has been obtained previously for a uniformly expanding sphere. In the present paper a new exact solution is derived which is valid not only for expansion but for contraction as well. It allows us to calculate analytically the total electromagnetic energy irradiated by the sphere involved in periodical radial motion with ar...
Numerical solutions of boundary value problems; applications in ferrohydrodynamics and magnetohydrodynamics
Şenel, Pelin; Tezer, Münevver; Department of Mathematics (2017)
In this thesis, steady, laminar, fully developed flows in pipes subjected to a point magnetic source or uniform magnetic field are simulated by the dual reciprocity boundary element method (DRBEM). The Navier-Stokes and energy equations are solved in terms of the velocity, pressure and the temperature of the fluid which are all of the original variables of the problem. The missing pressure equation is derived and pressure boundary conditions are generated by a finite difference approximation and the DRBEM c...
Modulus of Elasticity Estimation with One Dimensional Consolidation Test
Tanrıseven, Esra Nur; Bilgin, Hasan Aydın; Duzgun, Sebnem H. (2015-11-18)
The modulus of elasticity has primary importance in geotechnical engineering, since it defines the deformability of soil under existing field stresses and applied static loads. Elastic modulus (E-s) is most commonly derived from field tests (plate load test, standard penetration test, and cone penetration test etc.) and laboratory tests (unconfined compression tests, triaxial compression tests). Apart from these common methods, empirical relations may also be used to predict modulus of elasticity from one d...
First principles study on the structural, electronic, mechanical and lattice dynamical properties of XRhSb (X = Ti and Zr) paramagnet half-Heusler antimonides
SÜRÜCÜ, GÖKHAN; CANDAN, ABDULLAH; Erkisi, Aytac; Gencer, Ayşenur; Güllü, Hasan Hüseyin (IOP Publishing, 2019-10-01)
The half-Heusler TiRhSb and ZrRhSb alloys in the formation of face-centered cubic MgAgAs-type structure, which conforms to the F (4) over bar 3m space group with 216 as the space number, have been investigated using Generalized Gradient Approximation (GGA) implemented in Density Functional Theory (DFT). The calculated formation enthalpies and the plotted energy-volume curves of different types of structural phases (alpha, beta, and gamma) in these alloys indicate that the gamma-phase structure is the best e...
Singularities of spectra of infrared reflection of tertiary compounds of the type T1BX2
Hasanlı, Nızamı; Khomutova, M.D.; Sardarly, R.M.; Tagorov, V.I. (Springer Science and Business Media LLC, 1977-07-01)
The frequencies of lattice vibrations are calculated for compounds of the type T1BX2 on the basis of the linear-chain model. The calculated frequencies are compared with experimental values for TlGaS2 and TlGaSe2. The good agreement between the calculated and experimental frequencies serves as proof of the applicability of the linear-chain model to compounds of the T1BX2 type. The proposed method of calculation of frequencies makes it possible to predict the theoretical frequencies of lattice vibrations of ...
Citation Formats
V. Cheranovskii, E. Ezerskaya, and M. Krikunov, “Excitation spectrum of Hubbard model with infinite electron repulsion on strip-type triangular lattices,” INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, pp. 253–259, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66226.