Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling binary CO2/CH4 flow through coal media
Date
2008-01-01
Author
Gumrah, F.
Balan, H. O.
Atay, M. U.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
219
views
0
downloads
Cite This
CO2 can be sequestered in coal seams considering the environmental issues. By means of injecting CO2 into the coal seams, both sequestration of CO2 and the enhanced recovery of methane inside the coal seam can be realized. One-dimensional simulation regarding the binary CO2/CH4 flow in a coal seam core was studied by using an analytical solution method. The simulation results were compared with experimental data by matching the effluent concentrations of CO2 and CH4. The transport parameters such as longitudinal dispersion coefficient, retardation factor, and distribution coefficient were determined. It was seen that the amount of CO2 captured inside the coal sample during binary displacement was much lower than the maximum adsorption capacity of the coal at the same pressure. Then the transport behavior of CO2 and CH4 inside the coal seam was simulated. The results of analytical solution were in good agreement with the measured ones within the acceptable error range.
Subject Keywords
Fuel Technology
,
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
,
Nuclear Energy and Engineering
URI
https://hdl.handle.net/11511/66328
Journal
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS
DOI
https://doi.org/10.1080/15567030701468043
Collections
Department of Petroleum and Natural Gas Engineering, Article
Suggestions
OpenMETU
Core
Modeling of CO2 storage in an oil reservoir
Gumrah, F.; Dulger, M.; Gunaydin, D.; Senel, O. (Informa UK Limited, 2008-01-01)
This study provides an overview for the carbon dioxide sequestration process in an oil reservoir by using the software CMG's GEM. Different scenarios are applied for the oil reservoir description. Firstly, a single layered reservoir is considered and simulation studies are performed, as this reservoir is homogeneous, heterogeneous and fractured. Secondly, a multi-layered reservoir is examined. In the second case, a heterogeneous system and a heterogeneous system composed of homogenous layers are selected. F...
Simulating CO2 Sequestration in a Depleted Gas Reservoir
Ozkilic, O. I.; Gumrah, F. (Informa UK Limited, 2009-01-01)
CO2 in atmosphere levels can be reduced by sequestering it directly to the underground. High amounts of CO2 can be safely stored in underground media for very long time periods. Storage in depleted gas reservoirs provides an option for sequestering CO2. CO2 sequestration in Kuzey Marmara field has been considered in this study as an alternative to the gas storage projects. The reservoir still contains producible natural gas. Four scenarios were prepared by considering this fact with variations in the region...
GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey
Aydin, Nazli Yonca; Kentel Erdoğan, Elçin; Duzgun, H. Sebnem (Elsevier BV, 2013-06-01)
Renewable energy sources are presently being considered as alternatives to fossil fuels, because they are perpetual, environmentally friendly, and release negligible amounts of greenhouse gases to the atmosphere while producing energy. A disadvantage of renewable energy systems, however, is that continuous energy generation is not possible by using only one type of renewable energy system, since renewable energy resources depend on climate and weather conditions. Two or more renewable energy systems can be ...
A Numerical Simulation Study of Carbon-Dioxide Sequestration into a Depleted Oil Reservoir
Pamukcu, Y. Z.; Gumrah, F. (Informa UK Limited, 2009-01-01)
Utilization of CO2 for enhanced oil recovery and sequestration processes not only reduces greenhouse emissions but also awards economical benefits. Enhancing oil recovery in a sequestration is an optimization process that requires careful analysis. In CO2-enhanced oil recovery the main purpose is to maximize oil recovery with the minimum quantity of CO2 while a maximum amount of CO2 is aimed to store in a sequestration. Kartaltepe field having 32 degrees API gravity oil in a carbonate formation from southea...
Computation of instantaneous fuel consumption for the determination of combustion efficiency with special reference to coal briquette size
Altun, Naci Emre; Bagci, AS (Informa UK Limited, 2006-04-01)
This study comprises of the computation of instantaneous fuel consumptions as a straight means for the interpretation of combustion-related characteristics of coal. The model relies on the determination of the extent of combustion by the calculated fuel combustion amounts at specific instants in order to examine the oxidation behavior and possible influences governed by any variable of interest. In this context, coal briquettes prepared by varying dimensions with and without a volume constraint were evaluat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Gumrah, H. O. Balan, and M. U. Atay, “Modeling binary CO2/CH4 flow through coal media,”
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS
, pp. 1903–1914, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66328.