Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The momentum 4-vector imparted by gravitational waves in Bianchi-type metrics
Download
index.pdf
Date
2006-01-01
Author
Havare, A
Korunur, M
Salti, M
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
186
views
0
downloads
Cite This
Considering the MOller, Weinberg and Qadir-Sharif's definitions in general relativity, we find the momentum 4-vector of the closed universe based on the Bianchi-type metrics. The momentum 4-vector (due to matter plus fields) is found to be zero. This result supports the viewpoints of Albrow and Tryon and extends the previous works by Cooperstock-Israelit, Rosen, Johri et al., Banerjee-Sen and Vargas who investigated the problem of the energy in Friedmann-Robertson-Walker universe and SaltI-Havare who studied the problem of the energy-momentum of the viscous Kasner-type space-times.
Subject Keywords
Space and Planetary Science
,
Astronomy and Astrophysics
URI
https://hdl.handle.net/11511/66450
Journal
ASTROPHYSICS AND SPACE SCIENCE
DOI
https://doi.org/10.1007/s10509-006-6303-8
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Energy-momentum of a stationary beam of light in teleparallel gravity
Aydogdu, Oktay; Salti, Mustafa (Springer Science and Business Media LLC, 2006-01-01)
In this paper, we utilize the teleparallel gravity analogs of the energy and momentum definitions of Bergmann-Thomson and Landau-Lifshitz in order to explicitly evaluate the energy distribution (due to matter and fields including gravity) based on the Bormor space-time, it is shown that for a stationary beam of light, these energy-momentum definitions give the same result. Furthermore, this result supports the viewpoint of Cooperstock and also agree with the previous works by Bringley and Gad.
A SINGULARITY-FREE COSMOLOGICAL MODEL WITH A CONFORMALLY COUPLED SCALAR FIELD
BAYIN, SS; COOPERSTOCK, FI; FARAONI, V (American Astronomical Society, 1994-06-20)
We explore the possibility of describing our universe with a singularity-free, closed, spatially homogeneous and isotropic cosmological model, using only general relativity and a suitable equation of state which produces an inflationary era. A phase transition to a radiation-dominated era occurs as a consequence of boundary conditions expressing the assumption that the temperature cannot exceed the Planck value. We find that over a broad range of initial conditions, the predicted value of the Hubble paramet...
Gravitational energy-momentum density in Bianchi type II space-times
Aydogdu, Oktay (World Scientific Pub Co Pte Lt, 2006-04-01)
In this paper, using Einstein, Landau and Lifshitz's energy-momentum complexes both in general relativity and teleparallel gravity, we calculate the total energy distribution (due to matter and fields, including gravitation) associated with locally rotationally symmetric (LRS) Bianchi type II cosmological models. We show that energy densities in these different gravitation theories are the same, so they agree with each other. We obtain the result that the total energy is zero. This result agrees with previo...
The Lukash plane-wave attractor and relative energy
Korunur, Murat; Salti, Mustafa; Aydogdu, Oktay (World Scientific Pub Co Pte Lt, 2007-07-10)
We study energy distribution in the context of teleparallel theory of gravity, due to matter and fields including gravitation, of the universe based on the plane-wave Bianchi VII(delta) spacetimes described by the Lukash metric. For this calculation, we consider the teleparallel gravity analogs of the energy momentum formulations of Einstein, Bergmann-Thomson and Landau-Lifshitz. We find that Einstein and Bergmann-Thomson prescriptions agree with each other and give the same results for the energy distribut...
Energy of a stringy charged black hole in the teleparallel gravity
Salti, Mustafa (Springer Science and Business Media LLC, 2006-12-01)
We use the teleparallel geometry analog of the Moller energy-momentum complex to calculate the energy distribution (due to matter plus field including gravity) of a charged black hole solution in heterotic string theory. We find the same energy distribution as obtained by Gad who investigated the same problem by using the Moller energy-momentum complex in general relativity. The total energy depends on the black hole mass M and charge Q. The energy obtained is also independent of the teleparallel dimensionl...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Havare, M. Korunur, and M. Salti, “The momentum 4-vector imparted by gravitational waves in Bianchi-type metrics,”
ASTROPHYSICS AND SPACE SCIENCE
, pp. 43–46, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66450.