Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Gravitational energy-momentum density in Bianchi type II space-times
Download
index.pdf
Date
2006-04-01
Author
Aydogdu, Oktay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
214
views
66
downloads
Cite This
In this paper, using Einstein, Landau and Lifshitz's energy-momentum complexes both in general relativity and teleparallel gravity, we calculate the total energy distribution (due to matter and fields, including gravitation) associated with locally rotationally symmetric (LRS) Bianchi type II cosmological models. We show that energy densities in these different gravitation theories are the same, so they agree with each other. We obtain the result that the total energy is zero. This result agrees with previous works of Cooperstock and Israelit, Rosen, Johri et al., Banerjee and Sen, Vargas, Aydogdu and Salti. Moreover, our result supports the viewpoints of Albrow and Tryon.
Subject Keywords
Space and Planetary Science
,
Mathematical Physics
,
Astronomy and Astrophysics
URI
https://hdl.handle.net/11511/63392
Journal
INTERNATIONAL JOURNAL OF MODERN PHYSICS D
DOI
https://doi.org/10.1142/s0218271806008255
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Teleparallel gravitational energy in the gamma metric
Salti, Mustafa (World Scientific Pub Co Pte Lt, 2006-05-01)
The Moller energy (due to matter and fields including gravity) distribution of the gamma metric is studied in teleparallel gravity. The result is the same as those obtained in general relativity by Virbhadra in the Weinberg complex and Yang-Radincshi in the Moller definition. Our result is also independent of the three teleparallel dimensionless coupling constants, which means that it is valid not only in the teleparallel equivalent of general relativity, but also in any teleparallel model.
Energy-momentum of a stationary beam of light in teleparallel gravity
Aydogdu, Oktay; Salti, Mustafa (Springer Science and Business Media LLC, 2006-01-01)
In this paper, we utilize the teleparallel gravity analogs of the energy and momentum definitions of Bergmann-Thomson and Landau-Lifshitz in order to explicitly evaluate the energy distribution (due to matter and fields including gravity) based on the Bormor space-time, it is shown that for a stationary beam of light, these energy-momentum definitions give the same result. Furthermore, this result supports the viewpoint of Cooperstock and also agree with the previous works by Bringley and Gad.
The momentum 4-vector imparted by gravitational waves in Bianchi-type metrics
Havare, A; Korunur, M; Salti, M (Springer Science and Business Media LLC, 2006-01-01)
Considering the MOller, Weinberg and Qadir-Sharif's definitions in general relativity, we find the momentum 4-vector of the closed universe based on the Bianchi-type metrics. The momentum 4-vector (due to matter plus fields) is found to be zero. This result supports the viewpoints of Albrow and Tryon and extends the previous works by Cooperstock-Israelit, Rosen, Johri et al., Banerjee-Sen and Vargas who investigated the problem of the energy in Friedmann-Robertson-Walker universe and SaltI-Havare who studie...
Energy of a stringy charged black hole in the teleparallel gravity
Salti, Mustafa (Springer Science and Business Media LLC, 2006-12-01)
We use the teleparallel geometry analog of the Moller energy-momentum complex to calculate the energy distribution (due to matter plus field including gravity) of a charged black hole solution in heterotic string theory. We find the same energy distribution as obtained by Gad who investigated the same problem by using the Moller energy-momentum complex in general relativity. The total energy depends on the black hole mass M and charge Q. The energy obtained is also independent of the teleparallel dimensionl...
Scalar waves in a wormhole topology
Bugdayci, Necmi (World Scientific Pub Co Pte Lt, 2006-05-01)
Global monochromatic solutions of the scalar wave equation axe obtained in flat wormholes of dimensions (2+1) and (3+1). The solutions are in the form of infinite series involving cylindrical and spherical wave functions, and they are elucidated by the multiple scattering method. Explicit solutions for some limiting cases are illustrated as well. The results presented in this work constitute instances of solutions of the scalar wave equation in a space-time admitting closed time-like curves.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Aydogdu, “Gravitational energy-momentum density in Bianchi type II space-times,”
INTERNATIONAL JOURNAL OF MODERN PHYSICS D
, pp. 459–468, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/63392.