SIMULTANEOUS DEEP AND INTERMEDIATE DEPTH CONVECTION IN THE NORTHERN LEVANTINE SEA, WINTER 1992

1993-01-01
SUR, HI
OZSOY, E
UNLUATA, U
The northern Levantine Sea is the primary source region for the Levantine Intermediate Water (LIW) in the Mediterranean Sea. The Deep Water (DW) of the Eastern Mediterranean mainly originates in the Adriatic basin, but local contributions from the Levantine Sea have also been suspected in the past. Observations in the northern Levantine Sea during March 1992 shed new light on the above processes, showing simultaneous formation of DW in the cyclonic Rhodes Gyre (Rhodes Gyre) area, and of LIW in the adjacent regions. The deep convection region coincides with the permanent dome structure of the Rhodes Gyre, where overturning of the water is generated by cooling during sufficiently severe winters. The LIW is produced in a much larger area of the northern Levantine Sea than previously thought, by direct surface cooling and mixing of the near-surface stratified waters.
OCEANOLOGICA ACTA

Suggestions

Sources of the Levantine Intermediate Water in Winter 2019
Taillandier, V.; et. al. (2022-6-01)
Climatic changes and interannual variability in the Mediterranean overturning circulation are crucially linked to dense water formation in the Levantine Sea, namely the Levantine Intermediate Water whose formation zone, comprising multiple and intermittent sources, extends over fluctuating pathways. To probe into the variability of this water formation and spreading, a unique dataset was collected during the winter of 2019 in the western Levantine Sea, via oceanographic cruises, profiling floats and a glide...
Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts
Papadopoulos, Gerassimos A.; Gracia, Eulalia; Urgeles, Roger; Sallares, Valenti; De Martini, Paolo Marco; Pantosti, Daniela; Gonzalez, Mauricio; Yalçıner, Ahmet Cevdet; Mascle, Jean; Sakellariou, Dimitris; Salamon, Amos; Tinti, Stefano; Karastathis, Vassilis; Fokaefs, Anna; Camerlenghi, Angelo; Novikova, Tatyana; Papageorgiou, Antonia (Elsevier BV, 2014-08-01)
The origin of tsunamis in the Mediterranean region and its connected seas, including the Marmara Sea, the Black Sea and the SW Iberian Margin in the NE Atlantic Ocean, is reviewed within the geological and seismotectonic settings of the region. A variety of historical documentary sources combined with evidence from onshore and offshore geological signatures, geomorphological imprints, observations from selected coastal archeological sites, as well as instrumental records, eyewitnesses accounts and pictorial...
The distribution of man-made and naturally produced halocarbons in a double layer flow strait system
Fogelqvist, E; Tanhua, T; Basturk, O; Salihoglu, I (1996-08-01)
The Bosphorus Strait, which connects the Black Sea and Mediterranean Sea via the Marmara Sea, is characterised by two distinct water masses. The upper layer consists of low density Black Sea water (sigma-t 10-11) flowing southward, and it is underlain by high density water (sigma-t > 28) of Mediterranean origin flowing northward. The sharp density gradient between the two layers is due to the difference in salinities. Here we report measurements on a suite of low molecular weight halocarbons together with b...
THE EVOLUTION OF MEDITERRANEAN WATER IN THE BLACK-SEA - INTERIOR MIXING AND MATERIAL TRANSPORT BY DOUBLE-DIFFUSIVE INTRUSIONS
OZSOY, E; UNLUATA, U; TOP, Z (1993-01-01)
After its entry into the Black Sea from the Bosphorus Strait, Mediterranean Water first evolves by mixing with the Cold Intermediate Water on the shelf region, and later sinks along the continental slope, reaching the halocline in the form of cold anomalies. The intrusion of the modified waters drives a series of intermediate depth nepheloid layers spreading from the southwestern margin into the interior of the Black Sea basin. In many cases, the temperature, salinity, suspended matter and other properties ...
New Finite Frequency Teleseismic P wave Tomography of the Anatolian Sub continent and the Fate of the SubductedCyprean Slab
Portner, Daniel Evan; Biryol, C Berk; Delph, Jonathan R; Beck, Susan L; Zandt, George; Özacar, Atilla Arda; Eric A, Sandvol; Türkelli, Niyazi (2016-12-12)
The eastern Mediterranean region is characterized by active subduction of Tethyan lithosphere beneath the Anatolian sub-continent at the Aegean and Cyprean trenches. The subduction system is historically characterized by slab roll-back, detachment, and slab settling in the mantle transition zone. Prior mantle tomography studies reveal segmentation of the subducted Tethyan lithosphere, which is thought to have a strong control on surface volcanism and uplift across Anatolia. However, tomographic resolution, ...
Citation Formats
H. SUR, E. OZSOY, and U. UNLUATA, “SIMULTANEOUS DEEP AND INTERMEDIATE DEPTH CONVECTION IN THE NORTHERN LEVANTINE SEA, WINTER 1992,” OCEANOLOGICA ACTA, pp. 33–43, 1993, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66565.