Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Mimetic Finite-Difference Scheme for Convection of Multicomponent Fluid in a Porous Medium
Date
2009-09-17
Author
Tsybulin, Vyacheslav
Nemtsev, Andrew
Karasözen, Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
A mimetic finite-difference scheme for the equations of three-dimensional convection of a multicomponent fluid in a porous medium is developed. The discretization is based on staggered grids with five types of nodes (velocities, pressure, temperature, and mass fractions) and on a special approximation of nonlinear terms. Computer experiments have revealed the continuous family of steady states in the case of the zero heat fluxes through two opposite lateral planes of parallelepiped.
Subject Keywords
Cosymmetry
URI
https://hdl.handle.net/11511/66696
Collections
Department of Mathematics, Course Material