A characterization of an order ideal in Riesz spaces

Download
2004-01-01
Alpay, S
Emel'yanov, EY
Ercan, Z
In this paper we give a characterization of order ideals in Riesz spaces.
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY

Suggestions

A generalisation of the Morse inequalities
Bhupal, Mohan Lal (Cambridge University Press (CUP), 2001-06-01)
In this paper we construct a family of variational families for a Legendrian embedding, into the 1-jet bundle of a closed manifold, that can be obtained from the zero section through Legendrian embeddings, by discretising the action functional. We compute the second variation of a generating function obtained as above at a nondegenerate critical point and prove a formula relating the signature of the second variation to the Maslov index as the mesh goes to zero. We use this to prove a generalisation of the ...
A generic identification theorem for groups of finite Morley rank
Berkman, A; Borovik, AV (Wiley, 2004-02-01)
The paper contains a final identification theorem for the 'generic' K*-groups of finite Morley rank.
A formula for the joint local spectral radius
Emel'yanov, EY; Ercan, Z (American Mathematical Society (AMS), 2004-01-01)
We give a formula for the joint local spectral radius of a bounded subset of bounded linear operators on a Banach space X in terms of the dual of X.
A new representation of the Dedekind completion of C(K)-spaces
Ercan, Z; Onal, S (American Mathematical Society (AMS), 2005-01-01)
A new representation of the Dedekind completion of C( K) is given. We present a necessary and sufficient condition on a compact Haus-dorff space K for which the Dedekind completion of C(K) is B(S), the space of real valued bounded functions on some set S.
A quasi-incompressible and quasi-inextensible element formulation for transversely isotropic materials
Dal, Hüsnü (Wiley, 2019-01-06)
The contribution presents a new finite element formulation for quasi-inextensible and quasi-incompressible finite hyperelastic behavior of transeversely isotropic materials and addresses its computational aspects. The material formulation is presented in purely Eulerian setting and based on the additive decomposition of the free energy function into isotropic and anisotropic parts, where the former is further decomposed into isochoric and volumetric parts. For the quasi-incompressible response, the Q1P0 ele...
Citation Formats
S. Alpay, E. Emel’yanov, and Z. Ercan, “A characterization of an order ideal in Riesz spaces,” PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, pp. 3627–3628, 2004, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66718.