Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Conductive copolymers of polyaniline, polypyrrole and poly (dimethylsiloxane)
Date
2005-05-31
Author
Cakmak, G
Kucukyavuz, Z
Kucukyavuz, S
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
189
views
0
downloads
Cite This
Two step electrochemical polymerization method was used to obtain various conductive homopolymers, composites and copolymers of Polyaniline (PAn), Polypyrrole (PPy) and Poly(dimethylsiloxane) (PDMS). PAn/PPy, PDMS/PAn/PPy, PPy/PAn and PDMS/PPy/PAn conductive polymer films were synthesized with different compositions and their properties were compared. Films were characterized by conductivity measurements, cyclic voltammetry (CV), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. When both PPy and PAn existed in the films, the major contribution to the conductivity was due to the PPy component. PDMS/PPy/PAn films were more conductive than PDMS/PAn/PPy films similar to their binary counterparts without PDMS. When PPy was coated over PAn, thermally more stable films were obtained than the films synthesized in reverse order. The characterization tests implied the formation of chemically bounded new structures such as crosslinking copolymer structures. SEM microphotographs of PDMS/PAn/PPy films indicated a clear double layer structure. Hence, changing the order of coating had significant effects on the structure and properties of films.
Subject Keywords
Mechanical Engineering
,
Materials Chemistry
,
Mechanics of Materials
,
Electronic, Optical and Magnetic Materials
,
Condensed Matter Physics
,
Metals and Alloys
URI
https://hdl.handle.net/11511/66771
Journal
SYNTHETIC METALS
DOI
https://doi.org/10.1016/j.synthmet.2005.02.019
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Electrochemical preparation and characterization of carbon fiber reinforced poly (dimethyl siloxane)/polythiophene composites: electrical, thermal and mechanical properties
Sankir, M; Kucukyavuz, S; Kucukyavuz, Z (Elsevier BV, 2002-05-10)
A series of polydimethylsiloxane (PDMS)/polythiophene (Pth)/carbon fiber (CF) composites was synthesized by electrochemical polymerization using tetrabutylammoniumtetrafluoroborate (TBAFB) as supporting electrolyte and acetonitrile as solvent. Composites were characterized by TGA, SEM, and mechanical tests and conductivity measurements. Conductivities of composites were in the range of 25 S/cm. SEM studies show that CF were coated by PDMS/Pth matrix and well oriented in the matrix. In mechanical tests it ha...
Conducting polymers of succinic acid bis-(2-thiophen-3-yl-ethyl)ester and their electrochromic properties
SACAN, L; Çırpan, Ali; CAMURLU, P; Toppare, Levent Kamil (Elsevier BV, 2006-02-01)
The homopolymer and copolymer of succinic acid bis-(2-thiophen-3-yl-ethyl)ester with thiophene were achieved via constant potential electrolysis in the presence of tetrabutylammonium tetrafluoroborate as the supporting electrolyte, and acetonitrile/borontrifluoride ethylether (ACN/BFEE) (10:2 v/v) solvent mixture. The characterizations of both homopolymer (PSATE) and copolymer P(SATE-co-Th) were achieved by various techniques including cyclic voltammetry (CV), Fr-IR, scanning electron microscopy (SEM) and U...
CONDUCTING POLYMERS OF ANILINE .1. ELECTROCHEMICAL SYNTHESIS OF A CONDUCTING COMPOSITE
DOGAN, S; Akbulut, Ural; Toppare, Levent Kamil (Elsevier BV, 1992-11-01)
We describe an electrochemical synthesis of a conducting composite of polyaniline. Poly(bisphenol A carbonate) was used as the insulating polymer matrix. Composite characterization was made using FT-IR, SEM and DSC data. The conductivities of the composites seemed to be in the order of pure polyaniline as prepared by the same method. Moreover, the above-mentioned methods reveal that the resultant composites have different properties compared to a simple mechanical mixture of the two polymers.
Donor acceptor type neutral state green polymer bearing pyrrole as the donor unit
Celebi, Selin; Balan, Abidin; Epik, Bugra; Baran, Derya; Toppare, Levent Kamil (Elsevier BV, 2009-07-01)
A new neutral state green polymer, poly (2,3-bis(4-tert-butylphenyl)-5,8-di(1H-pyrrol-2-yl) quinoxaline) (PTBPPQ) was synthesized and its potential use as an electrochromic material was investigated. Spectroelectrochemistry studies showed that polymer reveals two distinct absorption bands as expected for a donor-acceptor type polymer, at 408 and 745 nm. In addition, polymer has excellent switching properties with satisfactory optical contrasts and very short switching times. Outstanding optical contrast in ...
Properties of YBCO superconductors prepared by ammonium nitrate melt and solid-state reaction methods
Sozeri, Huseyin; Ozkan, Husnu; Ghazanfari, Nader (Elsevier BV, 2007-01-31)
Ceramic YBCO superconductors were prepared by: (1) ammonium nitrate melt, (2) solid-state reaction methods and the properties of the samples obtained were compared. Under the same annealing conditions single phase YBCO was synthesized at a lower temperature by the former method. Moreover, at 900 degrees C Y-123 phase and the initially adjusted Y-211 additive could be formed using ammonium nitrate melt, but not with the solid-state method which leads Y-123 at a higher temperature (950 degrees C) without Y-21...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Cakmak, Z. Kucukyavuz, and S. Kucukyavuz, “Conductive copolymers of polyaniline, polypyrrole and poly (dimethylsiloxane),”
SYNTHETIC METALS
, pp. 10–18, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66771.