Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effects of fabrication parameters on the performance of solid oxide electrolyzer cell
Date
2016-06-22
Author
Korkmaz, Hatice
Timurkutluk, Bora
Timurkutluk, Cigdem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
195
views
0
downloads
Cite This
The microstructure has a great impact on the performance of solid oxide fuel/electrolyzer cells while the cell fabrication parameters mainly determine the microstructure of the cell components. In this study, a number of five-layered cells with 16 cm(2) active area are fabricated and the effects of several cell fabrication parameters including sintering temperature and electrode composition on the hydrogen production performance are investigated. The experimental results showed that the optimum sintering temperature of the electrolyte, cathode and anode should be 1400 degrees C, 1250 degrees C and 1075 degrees C, respectively, while the solid weight ratio of both NiO-ScSZ cathode and LSM-ScSZ anode functional layer should be 1:1. The optimized cell produces 38 Sccm H-2 at an operation temperature of 800 degrees C and 1.5 V. Then, the cell size is increased to a commercial size of 81 cm(2) active area. The final cell exhibits an acceptable H-2 production of 154 Sccm H-2 at 800 degrees C and 1.5 V. The relatively lower performance of the commercial-size cell is attributed to the inadequate current distribution/collection due to the increased surface area. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Solid oxide electrolyzer cell
,
Sintering temperature
,
Electrode composition
,
Hydrogen production
,
Performance optimization
URI
https://hdl.handle.net/11511/66813
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2016.02.005
Collections
Unclassified, Article
Suggestions
OpenMETU
Core
Effect of electrolyte/sulfur ratio in the cathode on the electrochemical performance of Li-S batteries
Emerce, Nur Ber; Külah, Görkem; Eroğlu Pala, Damla; Department of Chemical Engineering (2019)
In this study, the effect of electrolyte to sulfur (E/S) ratio in the cathode, which is an important cell design parameter, on the electrochemical and cell- and system-level performance of a Lithium-Sulfur (Li-S) battery is investigated through modeling efforts. First, a 1-D electrochemical model is developed for an isothermal, constant-current discharge of a Li-S cell to predict the voltage at 60% discharge depth. In the model, cathode exchange current density is defined as a linear function of the electro...
Effects of electrolyte pattern on mechanical and electrochemical properties of solid oxide fuel cells
TİMURKUTLUK, BORA; Celik, Selahattin; Toros, Serkan; Timurkutluk, Cigdem; Mat, Mahmut D.; Kaplan, Yuksel (2012-09-01)
In order to enhance the electrochemical performance and reduce the operation temperature of a conventional electrolyte supported solid oxide fuel cell (SOFC), a three layered electrolyte with various geometry is designed and fabricated. Novel three layered electrolytes comprise a dense and thin scandia alumina stabilized zirconia (ScAlSZ) electrolyte layer sandwiched between two hallow ScAlSZ electrolyte layers each having the same thickness as the support but machined into a filter like architecture in the...
Effects of membrane electrode assembly components on proton exchange membrane fuel cell performance
Bayrakceken, Ayse; Erkan, Serdar; Turker, Lemi; Eroğlu, İnci (Elsevier BV, 2008-01-01)
The objective of this study is to determine the effects of various factors on the performance of proton exchange membrane (PEM) fuel cell. These factors are membrane thickness, hot-pressing conditions of the gas diffusion layer (GDL) either onto the membrane or membrane electrode assembly (MEA) and Teflon:carbon ratio in the GDL on PEM fuel cell performance. Homemade five-layer and commercial three-layer MEAs were used in the experiments. Nafion (R) 112 and 115 which have nominal thicknesses of 50 and 125 m...
Effects of oxidative functionalized and aminosilanized carbon nanotubes on the crystallization behaviour of polyamide-6 nanocomposites
Kaynak, Cevdet (2014-04-01)
The purpose of this study is to investigate effects of oxidative functionalized and aminosilanized carbon nanotubes on the (1) isothermal and (2) non-isothermal crystallization kinetics of polyamide-6 by DSC analyses, and (3) crystal structure of injection molded specimens by XRD analyses. Nanocomposites were compounded by using melt mixing technique via twin screw extrusion. Due to basically very effective heterogeneous nucleation effect, both increasing amount and surface functionalization of carbon nanot...
The Effect of physical properties of the ELP-collagen based patterned surfaces on cell attachment and deformation
Antmen, Ezgi; Hasırcı, Vasıf Nejat; Demirci, Utkan; Department of Biology (2013)
Cell and substrate interactions are important in tissue engineering products especially on the behavior of the cells such as adhesion, migration, proliferation, and differentiation. These have been widely studied using substrates with different physical, chemical, and mechanical properties and form. In this study, elastin-like recombinamers (ELRs) were used blended with collagen or only collagen as the surface material. The ELR used in this study has Valine-Proline-Glycine-X-Glycine aminoacid sequences in i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Korkmaz, B. Timurkutluk, and C. Timurkutluk, “Effects of fabrication parameters on the performance of solid oxide electrolyzer cell,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 9723–9730, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66813.