A Simulink Nonlinear Model for LSRA Control Scheme Analysis

Pestana, Luis M.
Calado, M. do Rosario A.
Mariano, Silvio S.
This paper addresses the nonlinear model implementation of a Linear Switched Reluctance Actuator (LSRA) in the MATLAB/ Simulink simulation package. The model is based in an already implemented motor model for the rotating machine, which was improved and adopted to be applied in the analysis of a linear actuator. Both the magnetic information from experimental data and results obtained from Finite Element Analysis (FEA) were used to perform that study. The model is used in the assessment of several control schemes.


Efficient Three-Layer Iterative Solutions of Electromagnetic Problems Using the Multilevel Fast Multipole Algorithm
Onol, Can; Ucuncu, Arif; Ergül, Özgür Salih (2017-05-19)
We present a three-layer iterative algorithm for fast and efficient solutions of electromagnetic problems formulated with surface integral equations. The strategy is based on nested iterative solutions employing the multilevel fast multipole algorithm and its approximate forms. We show that the three-layer mechanism significantly reduces solution times, while it requires no additional memory as opposed to algebraic preconditioners. Numerical examples involving three-dimensional scattering problems are prese...
A finite field framework for modeling, analysis and control of finite state automata
Reger, Johann; Schmidt, Klaus Verner (Informa UK Limited, 2004-09-01)
In this paper, we address the modeling, analysis and control of finite state automata, which represent a standard class of discrete event systems. As opposed to graph theoretical methods, we consider an algebraic framework that resides on the finite field F-2 which is defined on a set of two elements with the operations addition and multiplication, both carried out modulo 2. The key characteristic of the model is its functional completeness in the sense that it is capable of describing most of the finite st...
Outputs bounds for linear systems with repeated input signals: existence, computation and application to vehicle platooning
Saglam, Harun Bugra; Schmidt, Klaus Verner (2018-01-01)
This paper investigates the effect of repeated time-limited input signals on the output excursion of stable, linear time-invariant systems. It is first shown that the maximum norm of the output signal remains bounded if the repeated input signals are separated by a nonzero dwell time. Then a novel method for computing a tight bound on the output signal norm is proposed. The setting of the paper is motivated by a vehicle platooning application, where vehicles repeatedly open/close gaps in order to perform la...
A 2-D unsteady Navier-Stokes solution method with overlapping/overset moving grids
Tuncer, İsmail Hakkı (1996-01-01)
A simple, robust numerical algorithm to localize intergrid boundary points and to interpolate unsteady solution variables across 2-D, overset/overlapping, structured computational grids is presented. Overset/ overlapping grids are allowed to move in time relative to each other. The intergrid boundary points are localized in terms of three grid points on the donor grid by a directional search algorithm. The final parameters of the search algorithm give the interpolation weights at the interpolation point. Th...
An adaptive, energy-aware and distributed fault-tolerant topology-control algorithm for heterogeneous wireless sensor networks
Deniz, Fatih; Bagci, Hakki; KÖRPEOĞLU, İBRAHİM; Yazıcı, Adnan (2016-07-01)
This paper introduces an adaptive, energy-aware and distributed fault-tolerant topology control algorithm, namely the Adaptive Disjoint Path Vector (ADPV) algorithm, for heterogeneous wireless sensor networks. In this heterogeneous model, we have resource-rich supernodes as well as ordinary sensor nodes that are supposed to be connected to the supernodes. Unlike the static alternative Disjoint Path Vector (DPV) algorithm, the focus of ADPV is to secure supernode connectivity in the presence of node failures...
Citation Formats
L. M. Pestana, M. d. R. A. Calado, and S. S. Mariano, “A Simulink Nonlinear Model for LSRA Control Scheme Analysis,” 2011, p. 141, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66904.