Polarization independent triple-band (5,4) semiconducting carbon nanotube metamaterial absorber design for visible and ultraviolet regions

Obaidullah, Madina
Esat, Volkan
Sabah, Cumali
Various metamaterial absorber designs operating in the microwave, infrared, visible, and ultraviolet frequency regions have been proposed in the literature. However, only a few studies have been done on the metamaterials that absorb in both visible and ultraviolet solar spectra. A triple-band polarization-insensitive metamaterial absorber structure with semiconducting single-walled carbon nanotube as the dielectric layer is proposed to efficiently absorb the incident electromagnetic radiations in visible and ultraviolet frequency regions. A unit cell of this design comprises three basic components in the form of metal-semiconductor-metal layers. The metallic part of the structure is aluminum, and the (5,4) single-walled carbon nanotube is used as the semiconducting material. The electromagnetic response of the proposed design is numerically simulated in the visible and ultraviolet regions with the maximum absorption rates of 99.75% at 479.4 THz, 99.94% at 766.9 THz, and 97.33% at 938.8 THz with corresponding skin depths of 13.0, 12.8, and 12.9 nm, respectively. Thus, solar cells based on this metamaterial absorber can offer nearly perfect absorption in the suggested frequency regions. The simple configuration of the design provides flexibility to control geometric parameters to be used in the solar cell and possesses the capability to be rescaled for other solar spectrum. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)


Thin film (6,5) semiconducting single-walled carbon nanotube metamaterial absorber for photovoltaic applications
Obaidullah, Madina; Esat, Volkan; Sabah, Cumali (2017-12-01)
A wide-band (6,5) single-walled carbon nanotube metamaterial absorber design with near unity absorption in the visible and ultraviolet frequency regions for solar cell applications is proposed. The frequency response of the proposed design provides wide-band with a maximum of 99.2% absorption. The proposed design is also simulated with (5,4), (6,4), (7,5), (9,4), and (10,3) chiralities, and results are compared to show that the proposed design works best with (6,5) carbon nanotube (CNT) but also good for ot...
Polarization angle independent metamaterial absorber based on circle-shaped resonators with interference theory
Dincer, Furkan; Karaaslan, Muharrrem; AKGÖL, OĞUZHAN; ÜNAL, EMİN; Sabah, Cumali (2015-11-10)
We theoretically and numerically designed a perfect metamaterial absorber at microwave frequencies. The proposed design has a very simple geometry, wide band properties and provides perfect absorption for all polarization angles which is one of the most desired properties for an absorber structure to be used in the applications where the source polarization is unknown. In order to explain the absorption mechanism both numerical and theoretical analyses are carried out. Designed structure offers a perfect ab...
Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application
Gunduz, O. T.; Sabah, C. (2016-03-01)
A new kind of multi-band metamaterial absorber based on the concentric ring resonators is engineered to be used in various microwave applications including energy harvesting. Numerical investigations are carried out step by step for observation of the effect of each ring resonator. The results reveal that the structure almost perfectly absorbs the electromagnetic wave with polarization angle independency at multiple resonant frequencies in the microwave range. Additionally, the structure is characterized ac...
Doğru Balbaşı, Çiğdem; Parlak, Mehmet; Department of Physics (2022-5-25)
CdZnTe is an II-VI group semiconductor material with significant properties used in many critical industrial applications, such as photovoltaic devices, photodiodes, photoconductors, room temperature gamma-ray spectroscopy, X-ray imaging, and infrared detectors. In Particular, CdZnTe is a promising material for solar cell application as an absorber layer due to its direct tunable bandgap property, high atomic number with strong absorption, excellent optoelectronic properties, and long-term stability. Howeve...
Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application
Rufangura, Patrick; Sabah, Cumali (2016-09-25)
Since the discovery of metamaterial absorber to the present days, several designs were proposed which display single-, dual-, and multiple-bands absorption responses in almost all regions of solar spectrum. However, little work has been done for wide-band metamaterial absorber in the visible frequency range. Hence, a novel wide-band metamaterial perfect absorber (MPA) based on concentric Circular Ring Resonator (CRR) topology is proposed for the application to improve the absorbance of solar photovoltaic ce...
Citation Formats
M. Obaidullah, V. Esat, and C. Sabah, “Polarization independent triple-band (5,4) semiconducting carbon nanotube metamaterial absorber design for visible and ultraviolet regions,” JOURNAL OF NANOPHOTONICS, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66988.