Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application
Date
2016-09-25
Author
Rufangura, Patrick
Sabah, Cumali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
212
views
0
downloads
Cite This
Since the discovery of metamaterial absorber to the present days, several designs were proposed which display single-, dual-, and multiple-bands absorption responses in almost all regions of solar spectrum. However, little work has been done for wide-band metamaterial absorber in the visible frequency range. Hence, a novel wide-band metamaterial perfect absorber (MPA) based on concentric Circular Ring Resonator (CRR) topology is proposed for the application to improve the absorbance of solar photovoltaic cells for the visible frequency region. The proposed design consists of three basic components as resonators, ground metal, and dielectric spacer. The geometrical parametric study is conducted in order to investigate the flexibility of the proposed MPA structure. The design flexibility also analyzed by the polarization angle insensitivity character, in which the proposed design provides the perfect absorption for different angles of the incident electromagnetic wave as well as for TE and TM polarized waves.
Subject Keywords
Metamaterial
,
Absorber
,
Solar cell
,
Photovoltaic applications
,
Wide-band
URI
https://hdl.handle.net/11511/64992
Collections
Engineering, Patent / Utility Model
Suggestions
OpenMETU
Core
Polarization independent triple-band (5,4) semiconducting carbon nanotube metamaterial absorber design for visible and ultraviolet regions
Obaidullah, Madina; Esat, Volkan; Sabah, Cumali (2017-10-01)
Various metamaterial absorber designs operating in the microwave, infrared, visible, and ultraviolet frequency regions have been proposed in the literature. However, only a few studies have been done on the metamaterials that absorb in both visible and ultraviolet solar spectra. A triple-band polarization-insensitive metamaterial absorber structure with semiconducting single-walled carbon nanotube as the dielectric layer is proposed to efficiently absorb the incident electromagnetic radiations in visible an...
Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator
BAĞMANCI, MEHMET; KARAASLAN, MUHARREM; ÜNAL, EMİN; AKGÖL, OĞUZHAN; Sabah, Cumali (2017-07-01)
A new metamaterial absorber (MA) is investigated and shown numerically for solar energy harvesting for future solar cell applications. The structure consists of two metals and one dielectric layer having different thicknesses. Owing to this combination, the structure exhibits plasmonic resonance characteristics. In the entire spectrum of visible frequency region, the obtained results show that investigated structure has perfect absorptivity which is above 91.8%. Proposed structure also has 99.87% absorption...
Wide-band perfect metamaterial absorber for solar cells applications
Rufangura, Patrick; Sabah, Cumali; Sustainable Environment and Energy Systems (2015-8)
Global adoption of solar photovoltaic (PV) cells as a sustainable substitute to fossil fuel technologies has been impeded by its low efficiency. Generally, efficiency of these devices strongly depends on their ability to absorb radiations of electromagnetic waves incident on them. Their low absorptivity provides a challenge. Metamaterials (MTM) based solar cells offer an opportunity for increasing the system efficiency by enhancing the total absorbed solar radiation incident on solar PV cells. In this thesi...
Thin film (6,5) semiconducting single-walled carbon nanotube metamaterial absorber for photovoltaic applications
Obaidullah, Madina; Esat, Volkan; Sabah, Cumali (2017-12-01)
A wide-band (6,5) single-walled carbon nanotube metamaterial absorber design with near unity absorption in the visible and ultraviolet frequency regions for solar cell applications is proposed. The frequency response of the proposed design provides wide-band with a maximum of 99.2% absorption. The proposed design is also simulated with (5,4), (6,4), (7,5), (9,4), and (10,3) chiralities, and results are compared to show that the proposed design works best with (6,5) carbon nanotube (CNT) but also good for ot...
Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications
Rufangura, Patrick; Sabah, Cumali (2016-06-25)
This paper proposes a metamaterial absorber design for solar energy harvesting using a simplified and symmetric structure. A unit cell of this design consists of three important layers namely, the bottom metallic layer, which is gold lossy, the intermediate layer: made of a lossy dielectric material that is gallium arsenide and patches which formed by a combination of gold and gallium arsenide. These three important layers are being carefully arranged at the top of a dielectric spacer. The geometric structu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. Rufangura and C. Sabah, “Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application,” 00, 2016.