Compressed Sensing Based Hyperspectral Unmixing

2014-04-25
Albayrak, R. Tufan
GÜRBÜZ, Ali Cafer
Gunyel, Bertan
In hyperspectral images the measured spectra for each pixel can be modeled as convex combination of small number of endmember spectra. Since the measured structure contains only a few of possible responses out of possibly many materials sparsity based convex optimization techniques or compressive sensing can be used for hyperspectral unmixing. In this work varying sparsity based techniques are tested for hyperspectral unmixing problem. Performance analysis of these techniques on sparsity level and measurement number are performed. Effect of high coherence of hyperspectral dictionaries is disccussed and effect of signal to noise ratio is analyzed.

Suggestions

Image fusion for improving spatial resolution of multispectral satellite images
Ünlüsoy, Deniz; Süzen, Mehmet Lütfi; Department of Geological Engineering (2013)
In this study, four different image fusion techniques have been applied to high spectral and low spatial resolution satellite images with high spatial and low spectral resolution images to obtain fused images with increased spatial resolution, while preserving spectral information as much as possible. These techniques are intensity-hue-saturation (IHS) transform, principle component analysis (PCA), Brovey transform (BT), and Wavelet transform (WT) image fusion. Images used in the study belong to Çankırı reg...
Efficient algorithms for convolutional inverse problems in multidimensional imaging
Doğan, Didem; Öktem, Figen S.; Department of Electrical and Electronics Engineering (2020)
Computational imaging is the process of indirectly forming images from measurements using image reconstruction algorithms that solve inverse problems. In many inverse problems in multidimensional imaging such as spectral and depth imaging, the measurements are in the form of superimposed convolutions related to the unknown image. In this thesis, we first provide a general formulation for these problems named as convolutional inverse problems, and then develop fast and efficient image reconstruction algorith...
TOTAL CARBON MAPPING WITH HYPERSPECTRAL UNMIXING TECHNIQUES
Soydan, Hilal; Koz, Alper; Düzgün, Hafize Şebnem; Alatan, Abdullah Aydın (2016-08-24)
Depending on the ground sampling distance of a remote sensor, a pixel of a spectral data cube is represented as a combination of the reflected signals of the materials which constitutes the observed pixel. Hyperspectral unmixing algorithms model the pixel of a data cube to determine and extract the spectral signatures of its components, namely endmembers, with their corresponding abundance fractions. This study first reviews the interaction and mitigation mechanisms of heavy metals with carbon content in so...
Compressive sensing imaging through a drywall barrier at sub-THz and THz frequencies in transmission and reflection modes
Takan, Taylan; ÖZKAN, VEDAT ALİ; Idikut, Firat; Yildirim, Ihsan Ozan; ŞAHİN, ASAF BEHZAT; Altan, Hakan (2014-09-24)
In this work sub-terahertz imaging using Compressive Sensing (CS) techniques for targets placed behind a visibly opaque barrier is demonstrated both experimentally and theoretically. Using a multiplied Schottky diode based millimeter wave source working at 118 GHz, metal cutout targets were illuminated in both reflection and transmission configurations with and without barriers which were made out of drywall. In both modes the image is spatially discretized using laser machined, 10 x 10 pixel metal aperture...
Compressive spectral imaging using diffractive lenses and multi-spectral sensors with learned reconstruction and joint optimization
Gündoğan, Utku; Öktem, Sevinç Figen; Department of Electrical and Electronics Engineering (2022-2)
Compressive spectral imaging aims to reconstruct the entire three-dimensional spectral cube from a few measurements, ideally with a snapshot capability. Recently various spectral imaging modalities have been developed by exploiting diffractive lenses. Another line of development in this area is enabled by spectral filter arrays which resulted in multi-spectral sensors. In this thesis, we first review an existing compressive spectral imaging modality with diffractive lenses and analyze its performance using ...
Citation Formats
R. T. Albayrak, A. C. GÜRBÜZ, and B. Gunyel, “Compressed Sensing Based Hyperspectral Unmixing,” 2014, p. 1438, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67069.