Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
High-volume natural pozzolan concrete for structural applications
Date
2007-09-01
Author
Uzal, Burak
Turani, Lutfullah
Mehta, P. Kumar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
247
views
0
downloads
Cite This
This paper presents the results of preliminary studies on concrete mixtures containing high volumes of natural pozzolan-(50%- by mass of total cementitious materials) for- structural applications. Three different kinds, of natural pozzolans from. Turkish deposits were used to prepare the high-volume natural pozzolan (HVNP) concrete. mixtures. Two additional mixtures with a high-volume of low-calcium fly ash and granulated blast-furnace slag were also prepared for comparison purposes. In addition, a conventional portland cement concrete mixture was prepared as a reference. The dosage required for a high-range water-reducing admixture for a given slump, air content, setting time, compressive strength, splitting-tensile strength, and resistance to chloride-ion, penetration was determined for the mixtures. Preliminary results indicated that the high-volume natural pozzolan concrete mixtures studied are suitable for structural concrete applications with 1.74 to 2.03 ksi (12 to 14 MPa) and 4.21 to 5.51 ksi (29 to 38 MPa) compressive strengths at 3 and 28 days, respectively.
Subject Keywords
Admixture
,
Blast-furnace slag
,
Chloride
,
Compressive strength
,
Fly ash
,
High-range water-reducing admixture
,
Pozzolan
URI
https://hdl.handle.net/11511/67073
Journal
ACI MATERIALS JOURNAL
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
High volume mineral additive for eco-cement
Sobolev, K; Arıkan, Mehmet Fırat (2002-01-01)
This paper presents a new approach to the production of High Volume Mineral Additive (HVMA) cement. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture, Supersilica. This new method increases the compressive strength of ordinary cement to 140 MPa and also permits the utilization of a high volume (up to 60%) of inexpensive indigenous mineral additives in the cement. The research results demonstrate that a high volume of n...
Performance-Based Seismic Design of Bitlis River Viaduct Based on Damage Control Using Seismic Isolation and Energy Dissipation Devices
Dicleli, Murat (2017-05-28)
This paper presents a sample application of seismic isolation techniques in performance-based design of a major viaduct. The Bitlis River viaduct is located in a seismically active region. The targeted performance goal required no damage at 475-year return period earthquake and repairable damage at 2475-year return period earthquake. The bridge is designed with a seismic isolation system composed of spherical bearings and MRSD (Multidirectional Re-centering steel Damper) hysteretic dampers. The MRSD is a re...
Steel Hysteretic Damper Featuring Displacement Dependent Hardening for Seismic Protection of Structures
Dicleli, Murat (Springer, London/Berlin , 2015-01-01)
In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MTHD) is a recently-patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. In this paper,...
Steel hysteretic damper featuring displacement dependent hardening for seismic protection of structures
Dicleli, Murat (2014-11-26)
In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MTHD) is a recently-patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is...
Long-term mechanical properties of cellulose fibre-reinforced cement mortar with diatomite
Ince, Ceren; Derogar, Shahram; Ball, Richard James; Ekinci, Abdullah; YÜZER, Nabi (Thomas Telford Ltd., 2019-09-01)
This paper presents a study investigating the long-term mechanical properties of cellulose fibre-reinforced cement mortars incorporating diatomite as a replacement material for quartz sand. Important properties including mass, compressive and flexural strength, sorptivity, water penetration depth and porosity have been rigorously investigated. Significant findings demonstrated that increasing the replacement level of diatomite resulted in a systematic decrease in the final mass of cellulose fibre-reinforced...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Uzal, L. Turani, and P. K. Mehta, “High-volume natural pozzolan concrete for structural applications,”
ACI MATERIALS JOURNAL
, pp. 535–538, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67073.