Fractional boundaries for fluid spheres

Bayin, S
Glass, EN
Krisch, JP
A single Israel layer can be created when two metrics adjoin with no continuous metric derivative across the boundary. The properties of the layer depend only on the two metrics it separates. By using a fractional derivative match, a family of Israel layers can be created between the same two metrics. The family is indexed by the order of the fractional derivative. The method is applied to Tolman IV and V interiors and a Schwarzschild vacuum exterior. The method creates new ranges of modeling parameters for fluid spheres. A thin shell analysis clarifies pressure/tension in the family of boundary layers.


ERIS, A; GURSES, M; Karasu, Atalay (AIP Publishing, 1984-01-01)
We formulate stationary axially symmetric (SAS) Einstein–Maxwell fields in the framework of harmonic mappings of Riemannian manifolds and show that the configuration space of the fields is a symmetric space. This result enables us to embed the configuration space into an eight‐dimensional flat manifold and formulate SAS Einstein–Maxwell fields as a σ‐model. We then give, in a coordinate free way, a Belinskii–Zakharov type of an inverse scattering transform technique for the field equations supplemented by a...
Hydrodynamic type integrable equations on a segment and a half-line
Guerses, Metin; Habibullin, Ismagil; Zheltukhın, Kostyantyn (AIP Publishing, 2008-10-01)
The concept of integrable boundary conditions is applied to hydrodynamic type systems. Examples of such boundary conditions for dispersionless Toda systems are obtained. The close relation of integrable boundary conditions with integrable reductions in multifield systems is observed. The problem of consistency of boundary conditions with the Hamiltonian formulation is discussed. Examples of Hamiltonian integrable hydrodynamic type systems on a segment and a semiline are presented. (C) 2008 American Institut...
Dynamical systems and Poisson structures
Guerses, Metin; Guseinov, Gusein Sh; Zheltukhın, Kostyantyn (AIP Publishing, 2009-11-01)
We first consider the Hamiltonian formulation of n=3 systems, in general, and show that all dynamical systems in R-3 are locally bi-Hamiltonian. An algorithm is introduced to obtain Poisson structures of a given dynamical system. The construction of the Poisson structures is based on solving an associated first order linear partial differential equations. We find the Poisson structures of a dynamical system recently given by Bender et al. [J. Phys. A: Math. Theor. 40, F793 (2007)]. Secondly, we show that al...
Consistency problem of the solutions of the space fractional Schrodinger equation
Bayin, Selcuk S. (AIP Publishing, 2013-09-01)
Recently, consistency of the infinite square well solution of the space fractional Schrodinger equation has been the subject of some controversy. Hawkins and Schwarz [J. Math. Phys. 54, 014101 (2013)] objected to the way certain integrals are evaluated to show the consistency of the infinite square well solutions of the space fractional Schrodinger equation [S. S. Bayin, J. Math. Phys. 53, 042105 (2012); 53, 084101 (2012)]. Here, we show for general n that as far as the integral representation of the soluti...
String-Theory Realization of Modular Forms for Elliptic Curves with Complex Multiplication
Kondo, Satoshi; Watari, Taizan (Springer Science and Business Media LLC, 2019-04-01)
It is known that the L-function of an elliptic curve defined over Q is given by the Mellin transform of a modular form of weight 2. Does that modular form have anything to do with string theory? In this article, we address a question along this line for elliptic curves that have complex multiplication defined over number fields. So long as we use diagonal rational N=(2,2) superconformal field theories for the string-theory realizations of the elliptic curves, the weight-2 modular form turns out to be the Bo...
Citation Formats
S. Bayin, E. Glass, and J. Krisch, “Fractional boundaries for fluid spheres,” JOURNAL OF MATHEMATICAL PHYSICS, pp. 0–0, 2006, Accessed: 00, 2020. [Online]. Available: