Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Single- and multi-walled carbon nanotubes for solar cell applications
Date
2018-08-20
Author
Obaidullah, Madina
Esat, Volkan
Sabah, Cumali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
18
views
0
downloads
Cite This
Emerging nanotechnologies have revealed carbon nanotubes (CNTs) as one of the best materials with immense potential. Considering the outstanding physical, mechanical, electrochemical, thermal, and optoelectronic properties of CNTs, extensive studies have been reported assessing their applications in several disciplines. This paper presents a broad review of the studies in the literature that address the contribution of CNTs in terms of their applications as different parts of solar cells such as photoelectrode, photoconductor, top and back electrode, replacement of indium tin oxide (ITO) as transparent conducting electrode (TCE) in a variety of photovoltaics such as silicon, organic, polymer and dye-sensitized with their subsequent efficiencies.
Subject Keywords
Metamaterial
,
Carbon nanotube
,
Silicon
,
Organic
,
Dye-sensitized solar cell
URI
https://hdl.handle.net/11511/67086
Journal
INTERNATIONAL JOURNAL OF MODERN PHYSICS B
DOI
https://doi.org/10.1142/s0217979218300074
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Thin film (6,5) semiconducting single-walled carbon nanotube metamaterial absorber for photovoltaic applications
Obaidullah, Madina; Esat, Volkan; Sabah, Cumali (2017-12-01)
A wide-band (6,5) single-walled carbon nanotube metamaterial absorber design with near unity absorption in the visible and ultraviolet frequency regions for solar cell applications is proposed. The frequency response of the proposed design provides wide-band with a maximum of 99.2% absorption. The proposed design is also simulated with (5,4), (6,4), (7,5), (9,4), and (10,3) chiralities, and results are compared to show that the proposed design works best with (6,5) carbon nanotube (CNT) but also good for ot...
Density functional theory and molecular dynamics simulations of carbon nanotubes, polyetheretherketone and their interfaces
Toraman, Gözdenur; Toffoli, Hande; Gürses, Ercan; Department of Physics (2018)
Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. A nanotube can roughly be described as a rolled-up graphene sheet, which is a two dimensional hexagonal arrangement of carbon atoms, often referred to as a honeycomb lattice. Carbon nanotubes, much like their parent material graphene, are characterized by high strength, high Young modulus, durability and tunable electronic behavior. As a result of these superior properties, CNTs have been used in diverse technologically relevant app...
Structural Vibration Analysis of Single Walled Carbon Nanotubes with Atom Vacancies
Dogan, Ibrahim Onur; Yazıcıoğlu, Yiğit (2014-11-01)
Recent investigations in nanotechnology show that carbon nanotubes have significant mechanical, electrical and optical properties. Interactions between those are also promising in both research and industrial fields. Those unique characteristics are mainly due to the atomistic structure of carbon nanotubes. In this paper, the structural effects of vacant atoms on single walled carbon nanotubes are investigated using matrix stiffness method. In order to use this technique, a linkage between structural mechan...
Single-walled carbon nanotube based metamaterial absorber for solar cell application
Obaidullah, Madina; Sabah, Cumali; Esat, Volkan; Sustainable Environment and Energy Systems (2017-6)
Carbon nanotubes possess superior mechanical and electrical properties such as being lightweight, strong, and flexible; and having high electrical conductivity. Solar cells containing single-walled carbon nanotubes that absorb photons near infrared region have been a focal area of research and development due to their promising characteristics of harvesting light in the long wavelength region, cost effectiveness and performance. Absorption properties of SWNTs are not yet well studied quantitatively, even th...
Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils
Dogru, Itir Bakis; Durukan, Mete Batuhan; Turel, Onur; Ünalan, Hüsnü Emrah (2016-06-01)
In this work, vertically aligned carbon nanotubes (VACNTs) grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD) method. Solution based ultrasonic spray pyrolysis (USP) method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Obaidullah, V. Esat, and C. Sabah, “Single- and multi-walled carbon nanotubes for solar cell applications,”
INTERNATIONAL JOURNAL OF MODERN PHYSICS B
, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67086.