A note on the importance of mass conservation in long-time stability of Navier-Stokes simulations using finite elements

2015-07-01
Belenli, Mine Akbas
Rebholz, Leo G.
Tone, Florentina
We prove a long-time stability result for the finite element in space, linear extrapolated Crank-Nicolson in time discretization of the Navier-Stokes equations (NSE). From this result and a numerical experiment, we show the importance of discrete mass conservation in long-time simulations of the NSE. That is, we show that using elements that strongly enforce mass conservation can provide significantly more accurate solutions over long times, compared to those that enforce it weakly.
APPLIED MATHEMATICS LETTERS

Suggestions

On the stability at all times of linearly extrapolated BDF2 timestepping for multiphysics incompressible flow problems
AKBAŞ, MERAL; Kaya, Serap; Kaya Merdan, Songül (2017-07-01)
We prove long-time stability of linearly extrapolated BDF2 (BDF2LE) timestepping methods, together with finite element spatial discretizations, for incompressible Navier-Stokes equations (NSE) and related multiphysics problems. For the NSE, Boussinesq, and magnetohydrodynamics schemes, we prove unconditional long time L-2 stability, provided external forces (and sources) are uniformly bounded in time. We also provide numerical experiments to compare stability of BDF2LE to linearly extrapolated Crank-Nicolso...
MUTUAL COUPLING EFFECTS OF FINITE RECTANGULAR PHASED-ARRAYS
YAVUZ, H; BUYUKDURA, OM (1994-04-14)
A rigorous integral equation formulation for the analysis of a phased array of flangemounted waveguide apertures is given for a finite number of elements and nonuniform spacings. The resulting set of ihtegrd equations is reduced to a matrix equation called the coupling matrix which relates the coefficients of all the modes in all the waveguides to one another. The solution then yields the dominant mode reflection coefficient, coefficients of scattered modes and hence the field in each waveguide. The blockTo...
Time filtered second order backward Euler method for EMAC formulation of Navier-Stokes equations
Demir, Medine; Çıbık, Aytekin; Kaya Merdan, Songül (2022-12-15)
© 2022 Elsevier Inc.This paper considers the backward Euler based linear time filtering method for the developed energy-momentum-angular momentum conserving (EMAC) formulation of the time dependent-incompressible Navier-Stokes equations in the case of weakly enforced divergence constraint. The method adds time filtering as a post-processing step to the EMAC formulation to enhance the accuracy and to improve the approximate solutions. We show that in comparison with the Backward-Euler based EMAC formulation ...
Analysis of a projection-based variational multiscale method for a linearly extrapolated BDF2 time discretization of the Navier-Stokes equations
Vargün, Duygu; Kaya Merdan, Songül; Department of Mathematics (2018)
This thesis studies a projection-based variational multiscale (VMS) method based on a linearly extrapolated second order backward difference formula (BDF2) to simulate the incompressible time-dependent Navier-Stokes equations (NSE). The method concerns adding stabilization based on projection acting only on the small scales. To give a basic notion of the projection-based VMS method, a three-scale VMS method is explained. Also, the principles of the projection-based VMS stabilization are provided. By using t...
On the Poisson sum formula for the analysis of wave radiation and scattering from large finite arrays
Aydın Çivi, Hatice Özlem; Chou, HT (1999-05-01)
Poisson sum formulas have been previously presented and utilized in the literature [1]-[8] for converting a finite element-by-element array field summation into an alternative representation that exhibits improved convergence properties with a view toward more efficiently analyzing wave radiation/scattering from electrically large finite periodic arrays. However, different authors [1]-[6] appear to use two different versions of the Poisson sum formula; one of these explicitly shows the end-point discontinui...
Citation Formats
M. A. Belenli, L. G. Rebholz, and F. Tone, “A note on the importance of mass conservation in long-time stability of Navier-Stokes simulations using finite elements,” APPLIED MATHEMATICS LETTERS, pp. 98–102, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67101.