Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Sizing of a Photovoltaic-Wind-Oil Shale Hybrid System: Case Analysis in Jordan
Date
2018-02-01
Author
AL-Ghussain, Loiy
Taylan, Onur
Fahrioglu, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
308
views
0
downloads
Cite This
The integration between renewable energy systems (RESs) and oil shale system ensures reliable power generation source with a competitive energy generation cost when compared to costs of conventional systems. In addition, this integration will prevent considerable amount of CO2 emissions. This study aims to determine the size of a grid-tied hybrid system in Al-Tafilah, Jordan that maximizes the yearly overall fraction of demand met with levelized cost of electricity (LCOE) equal to or lower than the local cost of electricity generation. In addition, the effect of the integration of lithium-ion batteries as shortterm energy storage systems (ESSs) will be investigated in addition to the effect of carbon social cost on the economics of the system. The maximum FH by the hybrid system in Al-Tafilah is 97.2% with ESS and 96.9% without ESS where 70.4% of the demand is met by the 12MW oil shale system; however, to achieve these fractions, enormous installed capacity of photovoltaic (PV) and wind is required where 99% of the energy production is excess and LCOE is larger than COEcon. The maximum FH with LCOE equals to COEcon can be achieved by 12 MW oil shale, 3.5 MW PV, and 6 MW wind turbines without ESS. Such size will have FH of 87.23%, capacity factor of 46.1%, RES fraction of 16.9%, net present value (NPV) of 34.8 million USD, and a payback period of 4.8 years.
Subject Keywords
Hybrid systems
,
Oil shale
,
Solar
,
Wind
,
Energy economics
,
Energy security
URI
https://hdl.handle.net/11511/67292
Journal
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME
DOI
https://doi.org/10.1115/1.4038048
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Sizing of Photovoltaic-Wind-Battery Hybrid System for a Mediterranean Island Community Based on Estimated and Measured Meteorological Data
Sadati, S. M. Sajed; Jahani, Elham; Taylan, Onur; Baker, Derek Keıth (2018-02-01)
Deploying renewable energy systems (RES) to supply electricity faces many challenges related to cost and the variability of the renewable resources. One possible solution to these challenges is to hybridize RES with conventional power systems and include energy storage units. In this study, the feasibility analysis of a grid-connected photovoltaic (PV)wind-battery hybrid system is presented as a microgrid for a university campus-scale community on a Mediterranean island. Models for PV and wind turbine syste...
Assessment of renewable energy based micro-grids for small communities
Sadati, S.M. Sajed; Taylan, Onur; Sustainable Environment and Energy Systems (2016-7)
Deploying renewable energy systems to supply electricity faces many challenges related to cost and variability of the renewable resources. One possible solution to these challenges is to hybridize renewable energy systems with conventional power systems and include energy storage systems. In this study, the feasibility analysis of two cases for electricity generation systems as (i) photovoltaic (PV)-battery-pumped hydro system (PHS) and (ii) PV-wind-battery are presented as a Renewable Energy Micro-Gr...
Analytical Modelling, Simulation and Comparative Study of Multi-Junction Solar Cells Efficiency
Hadjdida, Abdelkader; Bourahla, Mohamed; Ertan, Hulusi Bülent; Bekhti, Mohamed (2018-12-01)
Currently, solar energy is promising the primary source of renewable energy that has a great potential to generate power for an extremely low operating cost when compared to already existing power generation technologies. Increasing the efficiency of solar cells is a major goal and the prominent factor in photovoltaic system research. Current triple junction solar cells reach 30% and the next generation will bring 35% in 5 years to peak at 40%. These cells are used in space environment and in terrestrial sy...
Preliminary Study on Site Selection For Floating Hybrid Wind And Solar Energy Systems In Turkey
Yerlikaya, Nevzat Can; Çakan, Çağatay; Başara, Ilgın; Caceoğlu, Eray; Huvaj Sarıhan, Nejan (2021-09-08)
It is well-known that even though fossil fuels are the main energy resource in Turkey, use of sustainable energy resources such as wind and solar energy has been increasing in the past years and expected to continue on this trend in the next years to come. The suitable land for land-based wind turbines and photovoltaic (PV) systems could also be convenient for various other purposes, such as agriculture. This study aims to investigate the suitable sites for a combined floating wind and solar systems in the ...
Smart Solar Micro-grid Using ZigBee and Related Security Challenges
Qadir, Zakria; Tafadzwa, Vincent; Rashid, Haroon; Batunlu, Canras (2018-11-02)
Renewable energy is needed to preserve a sustainable environment. One particular form of renewable energy (solar energy) is one of the most important and cost-effective solutions to the energy crisis. In this study, efficient solar energy management using ZigBee technology shall he discussed. The system informs the user when solar panels produce excess power before supplying it to the surrounding users, thus making the supplier a prosumer instead of a consumer. GSM which is used to monitor energy usage over...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
L. AL-Ghussain, O. Taylan, and M. Fahrioglu, “Sizing of a Photovoltaic-Wind-Oil Shale Hybrid System: Case Analysis in Jordan,”
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME
, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67292.