Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Sizing of Photovoltaic-Wind-Battery Hybrid System for a Mediterranean Island Community Based on Estimated and Measured Meteorological Data
Date
2018-02-01
Author
Sadati, S. M. Sajed
Jahani, Elham
Taylan, Onur
Baker, Derek Keıth
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
318
views
0
downloads
Cite This
Deploying renewable energy systems (RES) to supply electricity faces many challenges related to cost and the variability of the renewable resources. One possible solution to these challenges is to hybridize RES with conventional power systems and include energy storage units. In this study, the feasibility analysis of a grid-connected photovoltaic (PV)wind-battery hybrid system is presented as a microgrid for a university campus-scale community on a Mediterranean island. Models for PV and wind turbine systems are presented to estimate energy production, and net present cost (NPC) and levelized cost of electricity (LCOE) are used as economic metrics. A parametric study is performed with hourly time-steps to determine the sizes of energy generation and storage units to minimize the NPC for a small community as the case study. Two alternate configurations with and without storage are proposed. In both cases, the resulting LCOE is 0.15 USD/kWh while the current electricity tariff for the analyzed location was 0.175 USD/kWh in 2015. This lower unit cost of electricity leads to a lower NPC considering a 25-year lifetime. Different estimated and measured solar irradiance and wind speed data sets are used to evaluate the performance of the designed microgrid. Sensitivity analysis on different available weather data sets shows that the uncertainty in wind resource estimations is much higher than the uncertainty in solar resource estimations. Moreover, the results show that solar and wind resources could be utilized synergistically for the studied location.
Subject Keywords
Renewable Energy Micro-Grid
,
PV System
,
Wind Energy
,
Energy Storage
,
Economic Assessment
,
Mediterranean Island
URI
https://hdl.handle.net/11511/42313
Journal
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME
DOI
https://doi.org/10.1115/1.4038466
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Assessment of renewable energy based micro-grids for small communities
Sadati, S.M. Sajed; Taylan, Onur; Sustainable Environment and Energy Systems (2016-7)
Deploying renewable energy systems to supply electricity faces many challenges related to cost and variability of the renewable resources. One possible solution to these challenges is to hybridize renewable energy systems with conventional power systems and include energy storage systems. In this study, the feasibility analysis of two cases for electricity generation systems as (i) photovoltaic (PV)-battery-pumped hydro system (PHS) and (ii) PV-wind-battery are presented as a Renewable Energy Micro-Gr...
Sizing of a Photovoltaic-Wind-Oil Shale Hybrid System: Case Analysis in Jordan
AL-Ghussain, Loiy; Taylan, Onur; Fahrioglu, Murat (2018-02-01)
The integration between renewable energy systems (RESs) and oil shale system ensures reliable power generation source with a competitive energy generation cost when compared to costs of conventional systems. In addition, this integration will prevent considerable amount of CO2 emissions. This study aims to determine the size of a grid-tied hybrid system in Al-Tafilah, Jordan that maximizes the yearly overall fraction of demand met with levelized cost of electricity (LCOE) equal to or lower than the local co...
GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey
Aydin, Nazli Yonca; Kentel Erdoğan, Elçin; Duzgun, H. Sebnem (Elsevier BV, 2013-06-01)
Renewable energy sources are presently being considered as alternatives to fossil fuels, because they are perpetual, environmentally friendly, and release negligible amounts of greenhouse gases to the atmosphere while producing energy. A disadvantage of renewable energy systems, however, is that continuous energy generation is not possible by using only one type of renewable energy system, since renewable energy resources depend on climate and weather conditions. Two or more renewable energy systems can be ...
Adaptation of Renewable Based Power Plants to the Energy Market Using Battery Energy Storage Systems
Durna, E.; Parlak, D.; Logoglu, E. Uz; Gercek, C. O. (2014-10-22)
This paper presents a method for the adaptation of a wind power plant to the energy market using battery energy storage systems (BESS) to show the feasibility of using fast-response batteries, and to calculate its payback period. The proposed method is also used to investigate the optimum battery size according to the installed capacity of the wind farm based on the price and wind forecast, and arbitrage opportunity so as to maximize the profit of the investor. The profit obtained from the market by the bat...
Modeling electrical energy production in Northwestern Cyprus based on solar and wind measurements
Yenen, Mehmet; Fahrioğlu, Murat; Sustainable Environment and Energy Systems (2015-1)
This thesis presents the solar and wind energy assessment and aims to model the link between measurement and electrical energy production from wind and solar resources in Northwestern Cyprus. The measurement systems were installed and the measurements from these systems were analyzed thoroughly to meet the expectations of this thesis. Existing mathematical models were used to calculate electrical energy production figures for wind and solar energy. A circuit based Photovoltaic (PV) model from the literature...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. M. S. Sadati, E. Jahani, O. Taylan, and D. K. Baker, “Sizing of Photovoltaic-Wind-Battery Hybrid System for a Mediterranean Island Community Based on Estimated and Measured Meteorological Data,”
JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME
, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42313.