Electronic and structural properties of armchair SWCNT/TiO2(110)-(1 x 2) system

2011-03-01
Tayran, C.
ÇAKMAK, MELEK
Elliatioglu, S.
We have presented structural and electronic properties of single-walled carbon nanotubes (CNTs) with armchair chirality on the reconstructed rutile TiO2(110)-(1 x 2) surface by means of ab initio calculations using density functional theory. For the TiO2 surface reconstruction, we have adopted an added-row model which was experimentally proposed in parallel to STM patterns and theoretically agreed by first principle calculations. In this work, we have studied, as examples, two CNTs with different sizes, (3,3) and (6,6), and their adsorption on this surface. The CNTs are observed not to chemisorb on the reconstructed rutile surface with added-rows, however, when it is further reduced, i.e., on the added-row model with the two topmost bridging oxygens removed, we obtained significant binding for the tubes through Ti-C bonds. We have also determined the band structures and the charge densities to discuss the effects and contributions of nanotubes to the gap states.
SURFACE SCIENCE

Suggestions

Atomic and electronic structure of group-IV adsorbates on the GaAs(001)-(1 x 2) surface
Usanmaz, D.; ÇAKMAK, MELEK; Ellialtıoğlu, Süleyman Şinasi (Elsevier BV, 2009-09-01)
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the atomic and electronic structure of the group-IV adsorbates (C, Si, Ge, Sn, and Pb) on the GaAs(001)-(1 x 2) surface considered in two different models: (i) non-segregated Ga-IV-capped structure and (ii) segregated structure in which the group-IV atoms occupying the second layer while the As atom floats to the surface. The non-segregated structure is energetically more favorable than the se...
Atomic and electronic structure of rigid carbon atomic chains
Usanmaz, D.; Srivastava, G. P. (Wiley, 2012-09-01)
We have reported, from ab initio calculations, on the changes in the electronic and structural properties of short carbon atomic chains held rigidly between hydrogenated armchair graphene nanoribbons (AGNR) and zig-zag graphene nanoribbons (ZGNR). Several lengths (N?=?29 atoms) and forms of the chains have been considered. All models are found to be metallic in nature, with chemical bonding more like $\cdots {\rm C}- {\rm C}\equiv {\rm C}- {\rm C}\equiv {\rm C}\cdots $ (as in polyyne) for odd-numbered chain...
Atomic and electronic structure of Sr/Si(001)-(2 x 2)
Cakmak, M.; Mete, E.; Ellialtıoğlu, Süleyman Şinasi (Elsevier BV, 2006-09-15)
The adsorption of Sr on the Si(001) surface with the semiantiphase dimer (2 x 2) reconstruction is studied, based upon the ab initio pseudopotential calculations. It is calculated that the sermantiphase dimer (2 x 2) reconstruction (2 dimers per unit cell) is more favorable than the (2 x 1) phase (I dimer per unit cell) by an energy of about 0.24 eV/dimer. Considering the energetically more stable reconstruction, we have assumed four possible locations for 1/4 monolayer (ML) Sr adsorption on this surface: (...
Wrinkling of graphene because of the thermal expansion mismatch between graphene and copper
Ogurtani, Omer Tarik; Senyildiz, Dogukan; Buke, Goknur Cambaz (Wiley, 2018-05-01)
Well-defined bundles of wrinkles are observed on the graphene-covered copper by using atomic force microscopy after chemical vapor deposition process. Their numerical analyses are performed by employing a set of formula deduced from classical elasticity theory of bent thin films with clamped boundary conditions. Here they are imposed by the banks of trenches associated with the reconstructed copper substrate surfaces, which suppress lateral movements of graphene monolayers and induce local biaxial stress. T...
Effect of low-energy electron irradiation on (Bi, Pb)-2212 superconductors
Ogun, SE; Goktas, H; Ozkan, H; Hasanlı, Nızamı (Elsevier BV, 2005-06-22)
The effect of low-energy electron irradiation on the properties of the Bi-based superconductors is studied. Two sets of polycrystalline (Bi, Pb)-2212 samples were synthesized by heating the appropriate mixtures of powders at 840 degrees C for 100 h, then quenched or furnace cooled to room temperature. The samples were irradiated by low-energy (1-10 keV), pulsed (20 ns) electron beam up to a dose of 6.2 x 10(15) cm(-2). X- ray diffraction patterns, resistance-temperature behaviours, critical currents, and mi...
Citation Formats
C. Tayran, M. ÇAKMAK, and S. Elliatioglu, “Electronic and structural properties of armchair SWCNT/TiO2(110)-(1 x 2) system,” SURFACE SCIENCE, pp. 593–596, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67299.