Dissociation of Ph-3 and AsH3 on Ge(100)(2x1) surface

2007-06-01
The most stable structures for the dissociation of phosphine and arsine on Ge(100)(2x1) surface have been investigated by relative total energy calculations based on Density Functional Theory. It has been found that the thermodynamically preferred structures in the dissociation path of phosphine and arsine are the same; PH2 and AsH2 products prefer to be on a single Ge dimer bond, but PH and AsH prefer to be between the adjacent Ge dimers. According to the optimization calculations, the dissociation path started with the adsorption of PH3(AsH3) on the electron deficient side of the Ge dimer bond is ended with the formation of P-P (As-As) dimers parallel to the dimers of Ge.
SURFACE REVIEW AND LETTERS

Suggestions

Electronic and structural properties of armchair SWCNT/TiO2(110)-(1 x 2) system
Tayran, C.; ÇAKMAK, MELEK; Elliatioglu, S. (Elsevier BV, 2011-03-01)
We have presented structural and electronic properties of single-walled carbon nanotubes (CNTs) with armchair chirality on the reconstructed rutile TiO2(110)-(1 x 2) surface by means of ab initio calculations using density functional theory. For the TiO2 surface reconstruction, we have adopted an added-row model which was experimentally proposed in parallel to STM patterns and theoretically agreed by first principle calculations. In this work, we have studied, as examples, two CNTs with different sizes, (3,...
Effect of hydrogenation on B/Si(001)-(1 x 2)
Cakmak, M.; Mete, E.; Ellialtıoğlu, Süleyman Şinasi (Elsevier BV, 2007-09-15)
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and the energetics of substitutional boron on the generic Si(001)-(1 x 2) surface. For a single B atom substitution corresponding to 0.5 ML coverage, we have considered two different sites: (i) the mixed Si-B dimer structure and (ii) boron substituting for the second-layer Si to form Si-B back-bond structure, which is energetically more favo...
Effect of low-energy electron irradiation on (Bi, Pb)-2212 superconductors
Ogun, SE; Goktas, H; Ozkan, H; Hasanlı, Nızamı (Elsevier BV, 2005-06-22)
The effect of low-energy electron irradiation on the properties of the Bi-based superconductors is studied. Two sets of polycrystalline (Bi, Pb)-2212 samples were synthesized by heating the appropriate mixtures of powders at 840 degrees C for 100 h, then quenched or furnace cooled to room temperature. The samples were irradiated by low-energy (1-10 keV), pulsed (20 ns) electron beam up to a dose of 6.2 x 10(15) cm(-2). X- ray diffraction patterns, resistance-temperature behaviours, critical currents, and mi...
Adsorption and dissociation of PH3 on SiGe(100) (2x1) surface
Turkmenoglu, Mustafa; Katırcıoğlu, Şenay (World Scientific Pub Co Pte Lt, 2008-06-01)
The most stable structures for the adsorption and dissociation of phosphine (PH3) on SiGe(100) (2 x 1) surface have been investigated by relative total energy calculations based on density functional theory. According to the optimization calculations, PH3 is adsorbed on the Si (down) and Ge (down) site of the Ge-Si and Ge-Ge dimers on SiGe surface, respectively. The PH2 and H products have been found to be thermodynamically favored in the dissociation path of PH3 on SiGe surface when the system is thermally...
Interaction of water molecule with silicon surfaces
Katırcıoğlu, Şenay (Elsevier BV, 1987-9)
In this work, a number of state density calculations are carried out to understand the binding states of adsorbed H2O on Si(111) and Si(100) surfaces and the spectra resulting therefrom. It is found that the angle between the molecular plane and the surface normal has a drastic effect on the adsorbate states. In the light of the IR, EELS and UPS experimental results, the LDOS calculations lead to the dissociative type adsorption of H2O on Si(111) and Si(100) surfaces excluding the molecular type.
Citation Formats
Ş. Katırcıoğlu, “Dissociation of Ph-3 and AsH3 on Ge(100)(2x1) surface,” SURFACE REVIEW AND LETTERS, pp. 507–515, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45977.