Robustness Adaptive Control For a Permanent Magnet Synchronous Motor

2011-09-10
Rebouh, S.
Kaddouri, A.
Abdessemed, R.
Haddoun, A.
This paper presents a vector control permanent magnet synchronous motor drive using backstepping control design. Backstopping control is proposed for replacing the existing PI controller to obtain high performance motion control systems for the speed control loop. Stability analysis based on Lyapunov theory is also performed to guarantee the convergence of the speed tracking error from all possible initials conditions. Computer simulations have been carried out in order to validate the effectiveness of the proposed schemes. The results show that accurate tracking performance of the PMSM has been achieved.

Suggestions

Adaptive Nonlinear Control Combined With Unscented Kalman Filter for Permanent Magnet Synchronous Motor Fed by AC/DC/AC Converter
Titaouine, A.; Taibi, D.; Bennis, O.; Benchabane, F.; Boumaraf, R.; Yahia, K. (2011-09-10)
In this paper, a adaptive non-linear controller is presented for permanent magnet synchronous motor (PMSM) sensorless drives. The adaptive non-linear controller is designed based on an input-output feedback linearization control technique. The unscented Kalman filter is used to estimate the speed, position and load torque. The PMSM is fed by an indirect power electronics converter. This indirect converter is controlled by a sliding mode technique that enables minimization of harmonics introduced by the line...
FPGA implementation of field oriented control forpermanent magnet synchronous motor
Irmak, Gizem; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2019)
The thesis study focuses on the fully operational FPGA implementation for the current/torque control of a Permanent Magnet Synchronous Motor. 3-phase synchronous motors with permanent magnets can be categorized into two categories as Permanent Magnet Synchronous Motor (PMSM) and Brushless Direct Current (BLDC) motor. The main difference between PMSM and BLDC is the shape of the induced back-EMF voltage. While BLDC motors have trapezoidal shaped back-EMF, PMSMs have a sinusoidal back-EMF. In order to take ad...
Performance comparison of inverter control techniques used for the supply of a linear PM synchronous actuator
Ben Salem, I.; Ouni, L. El Amraoui; Gillon, F.; Benrejeb, M.; Brochet, P. (2011-09-10)
This paper presents performance comparison of three inverter control techniques. These techniques are respectively hysteresis control, MAIM control and direct voltage control (DVC). They are applied for a PM Linear Tubular Synchronous Actuator (PAITI,SA) drive fed, using a three phase voltage source inverter (VSI). This VSI is working with constant switching time intervals as in the standard torque control DTC system.
Comparison of Matrix Converter Induction Motor Drive Control Methods
Lettl, Jiri; Kuzmanovic, Dragan; Fligl, Stanislav (2011-09-10)
In this paper, the implementation of the Field Oriented Control and the Direct Torque Control in matrix converter supplied induction motor drives is analysed, and compared with the implementation in drives supplied by the Voltage Source Inverter. The analysis is accompanied by the results of numerical simulations and experimental implementations of these two control methods.
Vector Magnetic Characteristic Analysis of Induction Motor considering Effect of Harmonic Component due to Secondary Slot
Enokizono, Masato; Kunihiro, Naoki (2011-09-10)
This paper presents load characteristics of a three-phase induction motor model core calculated with the finite element method considering two-dimensional vector magnetic properties. Influence of harmonic components due to the secondary slot of the rotor core on the total iron loss is investigated. In this paper we propose a new iron loss calculation method to consider higher harmonic components.
Citation Formats
S. Rebouh, A. Kaddouri, R. Abdessemed, and A. Haddoun, “Robustness Adaptive Control For a Permanent Magnet Synchronous Motor,” 2011, p. 49, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67397.