An Experimental Study of Cutting Performances of Worn Picks

Dogruoz, Cihan
Bolukbasi, Naci
Rostami, Jamal
Acar, Cemil
The best means to assess rock cuttability and efficiency of cutting process for using mechanical excavation is specific energy (SE), measured in full-scale rock cutting test. This is especially true for the application of roadheaders, often fitted with drag-type cutting tools. Radial picks or drag bits are changed during the operation as they reach a certain amount of wear and become blunt. In this study, full-scale cutting tests in different sedimentary rock types with bits having various degree of wear were used to evaluate the influence of bit wear on cutting forces and specific energy. The relationship between the amount of wear as represented by the size of the wear flats at the tip of the bit, and cutting forces as well as specific energy was examined. The influence of various rock properties such as mineral content, uniaxial compressive strength, tensile strength, indentation index, shore hardness, Schmidt hammer hardness, and density with required SE of cutting using different levels of tool wear was also studied. The preliminary analysis of the data shows that the mean cutting forces increase 2-3 times and SE by 4-5 times when cutting with 4 mm wear flat as compared to cutting with new or sharp wedge shape bits. The grain size distribution of the muck for cutting different rock types and different level of bit wear was analyzed and discussed. The best fit prediction models for SE based on statistical analysis of laboratory test results are introduced. The model can be used for estimating the performance of mechanical excavators using radial tools, especially roadheaders, continuous miners and longwall drum shearers.


A Study on integral recycling of valuable particle embedded composite wastes
Göynük, Tansu; Karakaya, İshak; Department of Metallurgical and Materials Engineering (2019)
Recovery of the valuable particle embedded composite cutting tools was achieved by electrodissolution and deposition techniques. Diamond embedded composite wastes including both bronze matrix and cobalt-copper-tin matrix were used to recycle comprehensively and efficiently within the scope of this thesis. The parameters like current density, temperature and electrolyte composition were optimized to obtain both diamond and metal constituents as compact, dense powder with minimum specific surface area and ave...
A Study on Tensile Strength of Compacted Fine-Grained Soils
Dagar, Volkan; Çokça, Erdal (Springer Science and Business Media LLC, 2020-08-01)
The tensile strength of clay is a major mechanical parameter and the main controlling parameter of tensile crack development which is generally encountered in geostructures. In this experimental study, 8-shaped direct tensile test and split tensile test were used to measure the tensile strength of compacted clay soil. Unconfined compression tests on the same clay samples were also carried out. Tensile strength and unconfined compression test results were compared. Laboratory tests were performed on Ankara c...
An investigation of the relationship between compressive strength and dust generation potential of magnetite pellets
SİVRİKAYA, OSMAN; Arol, Ali İhsan (Elsevier BV, 2013-09-10)
Iron ore pellets should have sufficient mechanical strengths against degradation at all stages of pellet production in pelletizing plants. Besides the strength, pellets should have less dust emission during operation since the process efficiency and the pelletizing equipments are adversely affected by dust. Dust is also a problem for sintered (product) pellets since they abrade during transportation from pellet production site to the reduction facilities. Sufficient mechanical strength and low dust emission...
An experimental study of vertical and inclined soil nails under footings as settlement reducers
Engin, Harun Kürşat; Ergun, Mehmet Ufuk; Department of Civil Engineering (2005)
Vertical and inclined soil nails under footings as settlement ا reducing elements is investigated using a physical 1g model in the laboratory. Nails are not connected to footing, they are not so long and vertical settlement of nails is very large compared to usual limits encountered for piles or micropiles. Following the settlement of footing, they share the load together with the footing. The skin friction is mostly mobilized and end-bearing failure occurs continuously during the settlement. The system of ...
Determination of the Tensile Strength of Different Fiber Reinforced Concrete Mixtures
Ardoğa, Mehmet Kemal; Alam, Burhan; Yaman, İsmail Özgür (null; 2016-09-21)
Enhancing the tensile performance of concrete is the main advantage when fibers are added to this type of building materials. This improvement is usually measured through indirect methods like bending or split-tensile tests, in a way similar to normal concrete due to the absence of a standard tensile test for such purpose. Naturally, this type of tests does not determine the real tensile strength of the fiber reinforced concrete. Hence an important parameter, that is needed in modelling and designing proces...
Citation Formats
C. Dogruoz, N. Bolukbasi, J. Rostami, and C. Acar, “An Experimental Study of Cutting Performances of Worn Picks,” ROCK MECHANICS AND ROCK ENGINEERING, pp. 213–224, 2016, Accessed: 00, 2020. [Online]. Available: