Discrete Optimization of Truss Structure using Probability Collectives

2012-12-07
Kulkarni, Anand J.
Kale, I. R.
Tai, K.
Azad, S. Kazemzadeh
Traditionally, complex systems were treated using centralized approaches; however, recent trends highlighted that the growing complexity can be best dealt by decomposing the entire system into subsystems and further treat them in a distributed way. The approach of Probability Collectives (PC) in Collective Intelligence (COIN) framework decomposes the entire system into a Multi-Agent System (MAS) or a collection of rational and self interested agents and further optimizes them in a distributed and decentralized way to reach the desired system objective. The complexity of the system increases when constraints are involved. The approach of PC is incorporated with a feasibility-based rule to handle the solution based on number of constraints violated, and further drives the convergence towards feasibility. Importantly for the first time, constrained PC approach has been tested solving a discrete problem such as 45-bar truss structure. The results are validated by comparing with the contemporary algorithms as well.

Suggestions

Hierarchical control with partial observations: Sufficient conditions
Boutin, Olivier; Komenda, Jan; Masopust, Tomas; Schmidt, Klaus Verner; Van Schuppen, Jan H. (2011-12-01)
In this paper, hierarchical control of both monolithic and modular discrete-event systems under partial observations is studied. Two new conditions, called observation consistency and local observation consistency, are proposed. These conditions are sufficient for the preservation of observability between the original and the abstracted plant. Moreover, it is shown that both conditions are compositional, that is, they are preserved by the synchronous product. This property makes it possible to use hierarchi...
Hierarchical and decentralized multitasking control of discrete event systems
Schmidt, Klaus Verner; Cury, José E. R. (2007-12-01)
In this paper, a hierarchical and decentralized approach for composite discrete-event systems (DES) that have to fulfill multiple tasks is elaborated. Colored marking generators that can distinguish classes of tasks are used as the system model, and a colored abstraction procedure as well as sufficient conditions for nonblocking and hierarchically consistent control are developed. It is shown that the computational complexity for supervisor computation is reduced. A flexible manufacturing system example dem...
A Control System Architecture for Control of Non-Affine in Control, Open-Loop Unstable Underactuated Systems
Marangoz, Alp; Kutay, Ali Türker (2017-07-25)
In this paper, a control system architecture for control of non-affine in control, open-loop unstable underactuated system is discussed. Passivization of the unactuated (internal) system dynamics achieved through perturbation of trajectories of the actuated states, which are calculated through adaptive dynamic inversion technique, based on Tikhonov's theorem. Performance of the controller is shown through simulation of two open-loop unstable and locally uncontrollable example problems.
Finite-Horizon Online Transmission Scheduling on an Energy Harvesting Communication Link with a Discrete Set of Rates
BACINOĞLU, BARAN TAN; Uysal, Elif (2014-06-01)
As energy harvesting communication systems emerge, there is a need for transmission schemes that dynamically adapt to the energy harvesting process. In this paper, after exhibiting a finite-horizon online throughput-maximizing scheduling problem formulation and the structure of its optimal solution within a dynamic programming formulation, a low complexity online scheduling policy is proposed. The policy exploits the existence of thresholds for choosing rate and power levels as a function of stored energy, ...
Discrete event supervisor design and application for manufacturing systems with arbitrary faults and repairs
Acar, Ayşe Nur; Schmidt, Klaus Verner (2015-10-07)
This paper considers the supervisory control of discrete event systems (DES) that are subject to faults. To this end, an existing method for the fault-recovery and repair of single faults is extended to the case of different faults. As a result, we obtain a supervisor that follows the specified nominal system behavior in the fault-free case, converges to a desired degraded behavior for each fault type and recovers the nominal behavior after repair. The results of the paper are illustrated by a small example.
Citation Formats
A. J. Kulkarni, I. R. Kale, K. Tai, and S. K. Azad, “Discrete Optimization of Truss Structure using Probability Collectives,” 2012, p. 225, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67712.