Sensitive Metamaterial Sensor for Distinction of Authentic and Inauthentic Fuel Samples

2017-08-01
Tumkaya, Mehmet Ali
Dincer, Furkan
KARAASLAN, MUHARREM
Sabah, Cumali
A metamaterial-based sensor has been realized to distinguish authentic and inauthentic fuel samples in the microwave frequency regime. Unlike the many studies in literature on metamaterial-based sensor applications, this study focuses on a compact metamaterial-based sensor operating in the X-band frequency range. Firstly, electromagnetic properties of authentic and inauthentic fuel samples were obtained experimentally in a laboratory environment. Secondly, these experimental results were used to design and create a highly efficient metamaterial-based sensor with easy fabrication characteristics and simple design structure. The experimental results for the sensor were in good agreement with the numerical ones. The proposed sensor offers a more efficient design and can be used to detect fuel and multiple other liquids in various application fields from medical to military areas in several frequency regimes.
JOURNAL OF ELECTRONIC MATERIALS

Suggestions

Implementation of a perfect metamaterial absorber into multi-functional sensor applications
AKGÖL, OĞUZHAN; KARAASLAN, MUHARREM; ÜNAL, EMİN; Sabah, C. (2017-05-30)
Perfect metamaterial absorber (MA)-based sensor applications are presented and investigated tigated in the microwave frequency range. It is also experimentally analyzed and tested to verify the behavior of the MA. Suggested perfect MA -based sensor has a simple configuration which introduces flexibility to sense the dielectric properties of a material and the pressure of the medium. The investigated applications include pressure and density sensing. Besides, numerical simulations verify that the suggested s...
Metamaterial-based high efficiency portable sensor application for determining branded and unbranded fuel oil
Tumkaya, Mehmet Ali; KARAASLAN, MUHARREM; Sabah, Cumali (2018-08-01)
In this study, we have developed an efficient metamaterial (MTM)-based portable fuel oil sensor in order to distinguish branded and unbranded fuel-oil samples. Electromagnetic properties of the fuel-oil samples are experimentally obtained and these data are defined in numerical analysis to design and test the performance of MTM sensor. Then, simulated MTM-based sensor structure is fabricated and measured to observe the efficiency and agreement to numerical results. Numerical and experimental studies are con...
Multifunctional metamaterial sensor applications based on chiral nihility
BAKIR, MEHMET; KARAASLAN, MUHARREM; AKGÖL, OĞUZHAN; Sabah, Cumali (2017-11-01)
In this paper, chiral nihility based pressure, density, temperature and moisture content metamaterial sensor applications are investigated in detail. A "chiral nihility'' medium in which both the permittivity and the permeability tend to zero is investigated. Gammadion shaped resonators particularly designed for chiral nihility are introduced. Bandwidths and signal strengths show admissible results. Simulation and experimental results prove that chiral nihility occurred at the resonance frequencies when med...
Demonstration of negative refractive index with low-cost inkjet-printed microwave metamaterials
İbili, Hande; Ergül, Özgür Salih (2018-01-01)
We present low-cost fabrications of inkjet-printed metamaterials that are resonating at microwave frequencies. A very low-cost setup involving commercial desktop printers loaded with silver-based inks is constructed and used to fabricate the metamaterials. We show that, despite the challenges in the low-cost fabrication processes, successful prints, and metamaterial samples can be obtained. A composite metamaterial design, which possesses a bandlimited transparency due to the induced negative refractive ind...
Investigation of microwave metamaterial based on H-shaped resonator in a waveguide configuration and its sensor and absorber applications
Sabah, Cumali; Taygur, Mehmet Mert; ZORAL, EMİNE YEŞİM (2015-04-13)
A microwave metamaterial (MTM) based on H-shaped resonator in a waveguide configuration is introduced and investigated both numerically and experimentally for X-band frequencies. The proposed model is designed and fabricated on both sides of the substrate and exhibits strong magnetic resonance at around 10.5GHz. Additionally, it has very simple design which improves and simplifies the fabrication process. Besides, only one single slab is used in the simulation and experiment which provides a reduction in th...
Citation Formats
M. A. Tumkaya, F. Dincer, M. KARAASLAN, and C. Sabah, “Sensitive Metamaterial Sensor for Distinction of Authentic and Inauthentic Fuel Samples,” JOURNAL OF ELECTRONIC MATERIALS, pp. 4955–4962, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67760.