# Torque Components Identification of Induction Machine by FEM

2011-09-10
Skalka, Miroslav
Ondrusek, Cestmir
Schreier, Ludek
Michailidis, Petr
This paper contains torque components identification of 3-phase induction machine. Electromagnetic torque and pulsating torque is calculated via a circular path integral of the Maxwell stress tensor which provides a convenient way of computing forces acting on bodies by evaluating a surface integral. Torque calculations are done by finite element method in ANSYS and MATLAB. Also there are identified a high harmonic components of calculated torque with additional asynchronous torque calculation. The torque identification has been verified experimentally on a laboratory machine using a special torque measurement system in the dynamic state. Whole measurement is processed by LabVIEW with using a special measurement card NI PCIe-6361 and torque measurement system with DATAFLEX 22/20.

# Suggestions

 Vector Magnetic Characteristic Analysis of Induction Motor considering Effect of Harmonic Component due to Secondary Slot Enokizono, Masato; Kunihiro, Naoki (2011-09-10) This paper presents load characteristics of a three-phase induction motor model core calculated with the finite element method considering two-dimensional vector magnetic properties. Influence of harmonic components due to the secondary slot of the rotor core on the total iron loss is investigated. In this paper we propose a new iron loss calculation method to consider higher harmonic components.
 High-frequency loss calculation in a smooth rotor induction motor using FEM Ertan, Hulusi Bülent; Leblebicioğlu, Mehmet Kemal (2007-09-01) In this paper, a new approach for the calculation of high-frequency losses in induction motors is presented. The input to the motors is assumed to be supplied from a sinusoidal voltage source. The method is based on the two-dimensional (2-D)). field solutions of the magnetic circuit, obtained by using a nonlinear "harmonic" solution. Hence, the solution time is very short. From the "harmonic" solution, the air-gap field distribution as well as the fundamental frequency eddy current losses are determined. Th...
 Magnetic and Structural Analysis of a Transverse Flux Claw Pole Linear Machine Keysan, Ozan; Mueller, Markus A. (2013-01-01) This paper details the design and testing of a novel transverse flux claw pole linear machine suitable for large superconducting generators. The machine utilises a modular claw pole transducer design with a stationary field winding which eliminates the need for cryogenic couplers and electrical brushes for a superconducting machine. The results from this prototype will enable a better understanding of the electromagnetic and mechanical structures before embarking on a more costly super-conducting design. Th...
 Elastic analysis of orthotropic cylinders under different boundary conditions Farukoğlu, Ömer Can; Eraslan, Ahmet Nedim; Department of Engineering Sciences (2016) Analytical solutions are derived to examine the elastic responses of fixed end cylinders made of orthotropic materials. Cylinders are investigated under different boundary conditions which are internal pressure, external pressure, combined pressure and annular rotation respectively. Making use of Maxwell relations, orthotropic cylinders are transformed to isotropic ones. In order to exhibit numerical examples different orthotropic materials are used and compared. It is observed that orthotrophy slightly inf...
 Self excitation of induction motors compensated by permanently connected capacitors and recommendations for IEEE Std 141-1993 Ermiş, Muammer; Cadirci, I; Zenginobuz, G; Tezcan, H (2000-10-12) Self-excitation of induction motors compensated by permanently-connected capacitors is investigated in this paper. Theoretical analyses of self-excitation phenomenon are carried out by using some simplified equivalent circuits, and a hybrid mathematical model in ABC/dq axes, respectively in steady-state, and transient-state. An unusual operating condition about water pumping stations is reported, in which water within the pipeline may drive the motor in the reverse direction at speeds higher than synchronou...
Citation Formats
M. Skalka, C. Ondrusek, L. Schreier, and P. Michailidis, “Torque Components Identification of Induction Machine by FEM,” 2011, p. 185, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67773.