Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Mobile traffic modelling for wireless multimedia sensor networks in IoT
Date
2017-11-01
Author
Al-Turjman, Fadi
Radwan, Ayman
Mumtaz, Shahid
Rodriguez, Jonathan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
239
views
0
downloads
Cite This
Wireless sensor networks suffer from some limitations such as energy constraints and the cooperative demands essential to perform multi-hop geographic routing for real-time applications. Quality of Service (QoS) depends to a great extent on offering participating nodes an incentive for collaborating. In this paper, we present a novel traffic model for a new-generation of sensor networks that supports a wide range of communication-intensive real-time multimedia applications. The model is used to investigate the effects of multi-hop communication on Intelligent Transportation Systems (ITS) via Markov discrete time M/M/1 queuing system. Moreover, an analytical formulation for the bit error rate (BER), and the critical path-loss model is presented. We address the degree of irregularity parameter for location-based switching with respect to two categories in distributed retransmission: the hop-by-hop and the end-to-end retransmission. Simulation results based on realistic case study and assumptions are performed to highlight the effects on the average packet delay, energy consumption, and network throughput. The findings presented in this work are of great help to designers of wireless multimedia sensor networks (WMSNs).
Subject Keywords
Wireless sensor networks
,
QoS
,
Geographical routing
,
Delay-tolerance
URI
https://hdl.handle.net/11511/67857
Journal
COMPUTER COMMUNICATIONS
DOI
https://doi.org/10.1016/j.comcom.2017.08.017
Collections
Engineering, Article
Suggestions
OpenMETU
Core
Path planning and localization for mobile anchor based wireless sensor networks
Erdemir, Ecenaz; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2017)
In wireless sensor networks, sensors with limited resources are distributed in a wide area. Localizing the sensors is an important problem. Anchor nodes with known positions are used for sensor localization. A simple and efficient way of generating anchor nodes is to use mobile anchors which have built-in GPS units. In this thesis, a single mobile anchor is used to traverse the region of interest to communicate with the sensor nodes and identify their positions. Therefore planning the best trajectory for th...
Life time sensitive weighted clustering on wireless sensor networks
Alizadeh Jarchlo, Elnaz; Bazlamaçcı, Cüneyt Fehmi; Department of Information Systems (2013)
Wireless Sensor Networks typically include wireless sensor nodes with limited energy. Network lifetime and scalability are considered as two significant requirements for sensor network applications. In order to decrease energy consumption and increase network lifetime one can apply an efficient clustering method. The application of the clustering method proposed in this thesis (LTS-WCA) leads to reducing the energy cost and the transmission distance of each node by grouping the nodes in several clusters and...
Wearable battery-less wireless sensor network with electromagnetic energy harvesting system
Chamanian, Salar; Ulusan, Hasan; Zorlu, Ozge; Baghaee, Sajjad; Uysal, Elif; Külah, Haluk (2016-10-01)
This paper presents a battery-less wireless sensor network (WSN) equipped with electromagnetic (EM) energy harvesters and sensor nodes with adjustable time-interval based on stored the energy. A wearable EM energy harvesting system is developed and optimized to power-up a typical wireless sensor mote from body motion. This is realized through characterization of the body motion and design of a compact EM energy harvester according to vibration frequencies generated during human running and walking. The harv...
A Survey on Multipath Routing Protocols for QoS Assurances in Real-Time Wireless Multimedia Sensor Networks
Hasan, Mohammed Zaki; Al-Rizzo, Hussain; Al-Turjman, Fadi (2017-01-01)
The vision of wireless multimedia sensor networks (WMSNs) is to provide real-time multimedia applications using wireless sensors deployed for long-term usage. Quality of service assurances for both best effort data and real-time multimedia applications introduced new challenges in prioritizing multipath routing protocols in WMSNs. Multipath routing approaches with multiple constraints have received considerable research interest. In this paper, a comprehensive survey of both best effort data and real-time m...
Packet Arrival Analysis in Wireless Sensor Networks
Doddapaneni, Krishna; Shah, Purav; Ever, Enver; Tasiran, Ali; Omondi, Fredrick A.; Mostarda, Leonardo; Gemikonakli, Orhan (2015-03-27)
Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. WSNs have seen a tremendous growth in various applicati...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Al-Turjman, A. Radwan, S. Mumtaz, and J. Rodriguez, “Mobile traffic modelling for wireless multimedia sensor networks in IoT,”
COMPUTER COMMUNICATIONS
, pp. 109–115, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/67857.