Packet Arrival Analysis in Wireless Sensor Networks

Doddapaneni, Krishna
Shah, Purav
Ever, Enver
Tasiran, Ali
Omondi, Fredrick A.
Mostarda, Leonardo
Gemikonakli, Orhan
Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. WSNs have seen a tremendous growth in various application areas including health care, environmental monitoring, security, and military purposes despite prominent performance and availability challenges. Clustering plays an important role in enhancement of the life span and scalability of the network, in such applications. Although researchers continue to address these grand challenges, the type of distributions for arrivals at the cluster head and intermediary routing nodes is still an interesting area of investigation. Modelling the behaviour of the networks becomes essential for estimating the performance metrics and further lead to decisions for improving the network performance, hence highlighting the importance of identifying the type of inter-arrival distributions at the cluster head. In this paper, we present extensive discussions on the assumptions of exponential distributions in WSNs, and present numerical results based on Q-Q plots for estimating the arrival distributions. The work is further extended to understand the impact of end-to-end delay and its effect on inter-arrival time distributions, based on the type of medium access control used in WSNs. Future work is also presented on the grounds that such comparisons based on simple eye checks are insufficient. Since in many cases such plots may lead to incorrect conclusions, demanding the necessity for validating the types of distributions. Statistical analysis is necessary to estimate and validate the empirical distributions of the arrivals in WSNs.
IEEE 29th International Conference on Advanced Information Networking and Applications Workshops WAINA 2015


UAV-Driven Sustainable and Quality-Aware Data Collection in Robotic Wireless Sensor Networks
Gül, Ömer Melih; Erkmen, Aydan Müşerref; Kantarci, Burak (2022-01-01)
Energy-aware data collection is of paramount importance for robotic and wireless sensor networks. Although static sink-aided cluster-based protocols provide energy-efficient solutions, UAV-aided approaches can be considered as better alternatives to reduce energy consumption while data acquisition compared with static sinks. Most of the existing UAV-driven solutions have not considered a limit on battery capacity of the UAV, which needs to be considered in a practical manner. This paper investigates energy-...
Energy-Aware Data Delivery Framework for Safety-Oriented Mobile IoT
Al-Turjman, Fadi (2018-01-01)
The proliferation of wireless multimedia sensor networks has given rise to intelligent transportation systems as a mobile data-sharing model. This vision can be extended under the umbrella of the mobile Internet of Things to include versatile resources, such as smartphones, radio frequency identification tags, and sensors on roads that can be utilized in emergency situations. The facilitation of such a vision faces key challenges in terms of interoperability, resource management and energy consumption. In t...
Path planning and localization for mobile anchor based wireless sensor networks
Erdemir, Ecenaz; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2017)
In wireless sensor networks, sensors with limited resources are distributed in a wide area. Localizing the sensors is an important problem. Anchor nodes with known positions are used for sensor localization. A simple and efficient way of generating anchor nodes is to use mobile anchors which have built-in GPS units. In this thesis, a single mobile anchor is used to traverse the region of interest to communicate with the sensor nodes and identify their positions. Therefore planning the best trajectory for th...
Routing and security in wireless sensor networks, an experimental evaluation of a proposed trust based routing protocol
Chalabianloo, Niaz; İşler, Veysi; Department of Computer Engineering (2013)
Satisfactory results obtained from sensor networks and the ongoing development in electronics and wireless communications have led to an impressive boost in the number of applications based on WSNs. Along with the growth in popularity of WSNs, previously implemented solutions need further improvements and new challenges arise which need to be solved. One of the main concerns regarding WSNs is the existence of security threats against their routing operations. Likelihood of security attacks in a structure su...
A Survey on Multipath Routing Protocols for QoS Assurances in Real-Time Wireless Multimedia Sensor Networks
Hasan, Mohammed Zaki; Al-Rizzo, Hussain; Al-Turjman, Fadi (2017-01-01)
The vision of wireless multimedia sensor networks (WMSNs) is to provide real-time multimedia applications using wireless sensors deployed for long-term usage. Quality of service assurances for both best effort data and real-time multimedia applications introduced new challenges in prioritizing multipath routing protocols in WMSNs. Multipath routing approaches with multiple constraints have received considerable research interest. In this paper, a comprehensive survey of both best effort data and real-time m...
Citation Formats
K. Doddapaneni et al., “Packet Arrival Analysis in Wireless Sensor Networks,” Gwangju, South Korea, 2015, p. 164, Accessed: 00, 2020. [Online]. Available: