Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Symmetry conditions for type II multiferroicity in commensurate magnetic structures
Date
2016-07-20
Author
Perez-Mato, J. M.
Gallego, S. V.
Elcoro, L.
Tasci, E.
Aroyo, M. I.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
194
views
0
downloads
Cite This
Type II multiferroics are magnetically ordered phases that exhibit ferroelectricity as a magnetic induced effect. We show that in single-k magnetic phases the presence in the paramagnetic phase of non-symmorphic symmetry combined with some specific type of magnetic propagation vector can be sufficient for the occurrence of this type of multiferroic behaviour. Other symmetry scenarios especially favourable for spin driven multiferroicity are also presented. We review and classify known type II multiferroics under this viewpoint. In addition, some other magnetic phases which due to their symmetry properties can exhibit type II multiferroicity are pointed out.
Subject Keywords
General Materials Science
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/68054
Journal
JOURNAL OF PHYSICS-CONDENSED MATTER
DOI
https://doi.org/10.1088/0953-8984/28/28/286001
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Electron-lattice interaction scattering mobility in Tl(2)InGaSe(4) single crystals
QASRAWI, ATEF FAYEZ HASAN; Hasanlı, Nızamı (IOP Publishing, 2008-04-16)
In this work, the dark electrical resistivity, charge carrier density and Hall mobility of Tl(2)InGaSe(4) single crystal have been recorded and analyzed to investigate the dominant scattering mechanism in the crystal. The data analyses have shown that this crystal exhibits an extrinsic n-type conduction. The temperature-dependent dark electrical resistivity analysis reflected the existence of two energy levels as 0.396 and 0.512 eV, being dominant above and below 260 K, respectively. The temperature depende...
Optical anisotropy in GaSe
Seyhan, A; Karabulut, O; Akınoğlu, Bülent Gültekin; Aslan, B; Turan, Raşit (Wiley, 2005-09-01)
Optical anisotropy of the layer semiconductor GaSe has been studied by photoluminescence (PL) and Fourier Transform Infrared Spectroscopy (FTIR). The PL spectra are dominated by two closely positioned emission bands resulting from the free exciton and the bound exciton connected direct band edge of GaSe. Photoluminescence and transmission spectra of GaSe crystals have been measured for two cases in which the propagation vector k is perpendicular (k perpendicular to c) and parallel to the c-axis (k//c). Peak...
Temperature dependence of magnetic and thermal properties of chiral HyFe and HyMn close to phase transitions by using the Landau mean field model
Tari, Ozlem; Yurtseven, Hasan Hamit (Elsevier BV, 2019-04-15)
Magnetic and thermal properties of chiral metal formate frameworks (MOFs) of NH2NH3M(HCOO)(3), M = Fe, Mn, namely, HyFe and HyMn are investigated close to phase transitions by using Landau phenomenological model. By expanding the free energy in terms of the order parameter, for magnetic properties the temperature dependence of magnetization and inverse magnetic susceptibility, and for thermal properties the heat capacity and entropy are calculated for chiral HyFe and HyMn close to phase transitions using th...
Crystal data, photoconductivity and carrier scattering mechanisms in CuIn5S8 single crystals
Qasrawi, AF; Hasanlı, Nızamı (Wiley, 2001-01-01)
The X-ray diffraction has revealed that CuIn5S8 is a single phase crystal of cubic spinet structure. The value of the unit cell parameter for this crystal is 1.06736 nm. The crystal is assigned to the conventional space group Fd3m. The photocurrent is found to have the characteristic of monomolecular and bimolecular recombination at low and high illumination intensities, respectively. The electrical resistivity and Hall effect of CuIn5S8 crystals are measured in the temperature range of 50-400 K. The crysta...
Crystal data, electrical resistivity, and Hall mobility of n-type AgIn5S8 single crystals
Qasrawi, AF; Hasanlı, Nızamı (Wiley, 2001-01-01)
The X-ray diffraction has revealed that AgIn5S8 is a single phase crystal of cubic spinel structure. The value of the unit cell parameter for this crystal is 1.08286 nm. The electrical resistivity and Hall effect of n-type AgIn5S8 crystals are measured in the temperature range of 50-400 K. A carrier effective mass of 0.20 m(0), an acceptor to donor concentration ratio of 0.8 and an acoustic phonons deformation potential of 20 eV are identified from the Hall effect measurement. The Hall mobility data art: an...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
J. M. Perez-Mato, S. V. Gallego, L. Elcoro, E. Tasci, and M. I. Aroyo, “Symmetry conditions for type II multiferroicity in commensurate magnetic structures,”
JOURNAL OF PHYSICS-CONDENSED MATTER
, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68054.