Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials

Barroso, Joaquim J.
Sabah, Cumali
Kaya, Yunus
Metamaterials (MMs) are artificial materials that have received attention recently because their built-in features create collective electromagnetic effects that are otherwise impossible, such as negative refraction, and because of their exotic electromagnetic applications, namely, perfect lens and invisibility cloaks. Depending on wave propagation characteristics, MMs possessing normally weak magneto-electric coupling coefficients start to exhibit stronger bianisotropic effects. Therefore, accurate electromagnetic characterization of these MMs is important. In this study, we adapt a stepwise method based on the Nicolson-Ross-Weir technique for accurate and unique retrieval of electromagnetic properties of bianisotropic MM slabs. For this goal, we have derived explicit expressions for unique retrieval of electromagnetic properties of these slabs and compared these expressions with those in the literature in the retrieval process. From the comparison, we note that derived expressions are appropriate for unique determination of electromagnetic properties of bianisotropic MM slabs. In the performance analysis of the stepwise method for different measurement scenarios, we considered different bianisotropic MM cell configurations (split-ring and Omega-shaped resonators as well as the same resonators with wire strips) and extracted their electromagnetic properties when measured/simulated scattering parameters have some thermal noise. We note that for most of the frequencies, the stepwise method retrieves correct electromagnetic properties even when a relatively higher normally distributed noise with zero mean value and with standard deviations of 0.015 is present. In addition to the influence of thermal noise on performance of the stepwise method, we also analyzed the effect of both increasing length slab and the frequency band on retrieved electromagnetic properties of the analyzed various bianisotropic MM slabs. (C) 2013 Optical Society of America


SWIR nightglow radiation detection around room temperature with depletion-engineered HgCdTe on alternative substrates
Livanelioglu, Can; Ozer, Yigit; Kocaman, Serdar (The Optical Society, 2020-01-01)
Night vision applications utilize the reflected nightglow radiation in the short-wavelength infrared (SWIR) atmospheric window. Nevertheless, the low light intensity values require dark current densities on the order of nA/cm(2) for detection around room temperature. Currently, with new device architectures and developments in growth and surface passivation, very low dark current density values are achievable for 1.7 mu m cutoff InGaAs detectors near room temperature, and such detectors seem to be the leadi...
Efficient computation of 2D point-spread functions for diffractive lenses
Ayazgok, Suleyman; Öktem, Sevinç Figen (The Optical Society, 2020-01-10)
Diffractive lenses, such as Fresnel zone plates, photon sieves, and their modified versions, have been of significant recent interest in high-resolution imaging applications. As the advent of diffractive lens systems with different configurations expands, the fast and accurate simulation of these systems becomes crucial for both the design and image reconstruction tasks. Here we present a fast and accurate method for computing the 2D point-spread function (PSF) of an arbitrary diffractive lens. The method i...
Broadband LWIR and MWIR metamaterial absorbers with a simple design topology: almost perfect absorption and super-octave band operation in MWIR band
ÜSTÜN, Kadir; Sayan, Gönül (The Optical Society, 2017-07-01)
Infrared absorbers are essential structures in the design of thermal emitters and thermal infrared imagers. In this study, we propose simple topologies of wideband metamaterial absorbers operating in the long-wave infrared or in the mid-wave infrared (MWIR) wavelengths of the electromagnetic spectrum where the atmosphere shows transparent behavior. Suggested metamaterial absorbers are mostly thin structures that consist of three functional layers from top to bottom: a periodically patterned metal layer, a p...
Ultra-broadband long-wavelength infrared metamaterial absorber based on a double- layer metasurface structure
ÜSTÜN, Kadir; Sayan, Gönül (The Optical Society, 2017-02-01)
In this paper, we report a metamaterial absorber design that achieves a broad absorption band encompassing the whole long-wavelength infrared (LWIR) region. The structure consists of two parallel metasurfaces buried in an amorphous silicon dielectric layer, where the minimum size for all possible planar details does not go below 1 mu m, making the use of standard optical lithography possible for fabrication. The dielectric layer of the structure is placed over a metallic ground plane that inhibits the trans...
Dispersive optical constants of Tl2InGaSe4 single crystals
Qasrawi, A. F.; Hasanlı, Nızamı (IOP Publishing, 2007-09-01)
The structural and optical properties of Bridgman method grown Tl2InGaSe4 crystals have been investigated by means of room temperature x-ray diffraction, and transmittance and reflectance spectral analysis, respectively. The x-ray diffraction technique has shown that Tl2InGaSe4 is a single phase crystal of a monoclinic unit cell that exhibits the lattice parameters of a = 0.77244 nm, b = 0.64945 nm, c = 0.92205 nm and beta = 95.03 degrees . The optical data have revealed an indirect allowed transition band ...
Citation Formats
U. C. HASAR, J. J. Barroso, C. Sabah, Y. Kaya, and M. ERTUĞRUL, “Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials,” JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, pp. 1058–1068, 2013, Accessed: 00, 2020. [Online]. Available: