Simulation of a Standard Store Separated from Generic Wing

Sheharyar, M.
Uddin, E.
Ali, Z.
Zaheer, Q.
Mubashar, A.
Evaluation of store separation experimentally is expensive; time consuming and dangerous as human risks are involved. This results in development of computational methods to simulate the store separation. Store separation studies include store separation simulation and determination of linear and angular displacements of store under the influence of complex and non-uniform flow field of parent aircraft. In order to validate the methodology, the unsteady CFD results, obtained by coupling six degrees of freedom (6-DOF) with flow solver, are compared with experimental results. Major trends are captured which are consistent with experimental results. Variation in store trajectory has been evaluated with different combinations of forward and rearward ejection forces. By increasing the magnitude of forward ejection force vertical displacement increases and store separates more safely from the wing. Moreover, effects of varying parent wing configuration on store trajectory has also been analyzed by incorporation of leading-edge flaps (LEFs). Store always separates in nose down condition due to LEFs which increases vertical displacement of store and thus safety related to store separation is enhanced.


Analysis of stress in the elastic state in a solid cylinder subjected to periodic boundary condition
Yedekçi, Buşra; Eraslan, Ahmet Nedim; Department of Engineering Sciences (2015)
An analytical model is developed to investigate the thermoelastic response of a solid cylinder subjected to periodic boundary condition. Time dependent periodic boundary condition for the solid cylinder is treated by the help of Duhamel's theorem. The corresponding thermoelastic equation is obtained in terms of radial displacement by using basic equations of elasticity under generalized plane strain presupposition. Analytical solution of the thermoelastic equation is obtained to determine the distributions ...
Analysis of Lossy Dielectric Objects with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2011-07-08)
Rigorous solutions of electromagnetics problems involving lossy dielectric objects are considered. Problems are formulated with two recently developed formulations, namely, the combined-tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE), and solved iteratively using the multilevel fast multipole algorithm (MLFMA). Accuracy and efficiency of solutions are compared for different objects and conductivity values. We show that iterative solutions of CTF a...
Design of a high precision hybrid AM machine
Yılmaz, Yunus Emre; Dölen, Melik; Department of Mechanical Engineering (2019)
Precision requirements in fused deposition modelling (FDM) processes have been increasing in recent years, especially after recognizing the potential of FDM process to produce complex and functional components. In order to increase precision of FDM process, 6-axis hybrid manufacturing system, which can carry out additive- and subtractive manufacturing processes in one manufacturing system platform, is designed. During design, kinematic analysis of the machine is done, axial- and angular errors are estimated...
Investigation of periodic boundary conditions in multipassage cascade flows using overset grids
Tuncer, İsmail Hakkı; Sanz, W (ASME International, 1999-04-01)
A Navier-Stokes solutions method with overset grids is applied to unsteady multipassage cascade flows, and the unsteady blade loadings are compared against the single-passage solutions with the direct store interblade boundary condition. In the overset grid solutions, the multipassage domain is discretized with O-type grids around each blade and a rectangular background grid. Blade grids are allowed to move in time relative to the background grid as prescribed by the oscillatory plunging motion. The overset...
Modeling of Multi Open Phase Fault Condition of Multi-phase Permanent Magnet Synchronous Motors
Fei, Marco; Zanasi, Roberto (2011-09-10)
This paper deals with the modeling of multi-phase permanent magnet synchronous motors under multi open phase fault condition. The presented model is suitable for generic number of phases, generic shape of the rotor flux and generic number of open circuit faults. The motor model in fault condition can be used for faults occurring on both adjacent and not adjacent phases. The model can be very useful both for simulation and implementation of fault-tolerant control strategies.
Citation Formats
M. Sheharyar, E. Uddin, Z. Ali, Q. Zaheer, and A. Mubashar, “Simulation of a Standard Store Separated from Generic Wing,” JOURNAL OF APPLIED FLUID MECHANICS, pp. 1579–1589, 2018, Accessed: 00, 2020. [Online]. Available: