Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design of a high precision hybrid AM machine
Download
index.pdf
Date
2019
Author
Yılmaz, Yunus Emre
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
318
views
182
downloads
Cite This
Precision requirements in fused deposition modelling (FDM) processes have been increasing in recent years, especially after recognizing the potential of FDM process to produce complex and functional components. In order to increase precision of FDM process, 6-axis hybrid manufacturing system, which can carry out additive- and subtractive manufacturing processes in one manufacturing system platform, is designed. During design, kinematic analysis of the machine is done, axial- and angular errors are estimated by Monte Carlo simulation and components of linear- and rotary bearings are selected based on the model constructed to identify the axial and radial errors of the linear- and rotary axis. Furthermore, other machine components such as structures and transmission and actuation as well as sensor selection processes are explained. The components of the structure, four linear axes and the rotary stage components are manufactured and assembled, while spindle and extruder head planned to be manufactured in near future.
Subject Keywords
Machining.
,
Precision Machine Design
,
Hybrid Manufacturing
,
Error Budget
,
Modular Design
,
Additive and Subtractive Manufacturing.
URI
http://etd.lib.metu.edu.tr/upload/12623900/index.pdf
https://hdl.handle.net/11511/44048
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Fabrication of microfluidic devices for dielectrophoretic and acoustophoretic applications using high precision machining
Soheila, Zenaili; Çetin, Barbaros; Özer, Mehmet Bülent; Süleyman, Büyükkoçak (2014-07-03)
In this study, the fabrication of microfluidic devices for dielectrophoretic and acoustophoretic based applications with high-precision CNC machining has been presented. For both devices, molds out of stainless steel have been fabricated, and polymer molding is implemented. For dielectrophoretic device, the metal electrodes have been fabricated using high-precision machining and embedded into the device during the molding process. For acoustophoretic device, piezoelectric slides have been embedded into the ...
Development of a web-based manufacturing application system for rotational parts
Özsüer, Erhan; Anlağan, Ömer; Department of Mechanical Engineering (2003)
Developing process plans and part programs rapidly and correctly for CNC machine tools plays a vital role in manufacturing. This study is concerned with the development of a web-enabled virtual design and manufacturing application system for rotational parts. The object oriented methodology is used in the application development. Windows Distributed interNet Application (DNA) architecture which describes a framework of building software technologies in an integrated web and client-server model of computing,...
Optimization of Power Conversion Efficiency in Threshold Self-Compensated UHF Rectifiers With Charge Conservation Principle
Gharehbaghi, Kaveh; KOÇER, FATİH; Külah, Haluk (2017-09-01)
This paper presents a compact model for threshold self-compensated rectifiers that can be used to optimize circuit parameters early in the design phase instead of time-consuming transient simulations. A design procedure is presented for finding the optimum aspect ratio of transistors used in the converter and number of rectifying stages to achieve the maximum power conversion efficiency. In the presented analysis, the relation between the power conversion efficiency and the load current over the variation o...
Optimum design of multistep spur gearbox
Öztürk, Fatih Mehmet; Department of Mechanical Engineering (2005)
Optimum design of multistep gearbox, since many high-performance power transmission applications (e.g., automotive, space industry) require compact volume, has become an important interest area. This design application includes more complicated problems that are not taken into account while designing single stage gear drives. Design applications are generally made by trial and error methods depending on the experience and the intuition of the designer. In this study, using Visual Basic 6.0, an interactive p...
Calculation of parameters of single-phase PM motor for design optimization
Ertan, Hulusi Bülent; Capolino, GA (2005-09-01)
This paper presents methods of calculation of parameters of single-phase permanent-magnet (SPPM) motor, in terms of motor dimensions and material properties, which are utilized in the dynamic model of the motor. The intention of the study is to develop means of SPPM performance calculations, which lend themselves to be employed within a mathematical design optimization approach. The calculated parameters are compared with measured values and are shown to be accurate for the purpose of the study.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. E. Yılmaz, “Design of a high precision hybrid AM machine,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Mechanical Engineering., Middle East Technical University, 2019.