Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Transition metal-doped janus monolayer SMoSe with excellent thermal spin filter and spin Seebeck effect
Date
2019-10-15
Author
Ding, Guangqian
Wei, Mian
Surucu, Gokhan
Liang, Zhengyong
Wang, Xiaotian
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
170
views
0
downloads
Cite This
Motivated by the recent experimental synthesis of the novel janus monolayer SMoSe, we propose the design of spin caloritronic material based on transition metal-doped SMoSe monolayer. Using density functional theory combined with the non-equilibrium Green's function method, we show that a perfect thermal spin filter and a negative differential thermoelectric resistance are obtained in Fe-doped SMoSe janus monolayer. For Cr-doped SMoSe janus monolayer on the other hand, the thermal induced spin-up and spin-down currents flow in opposite directions with nearly equal magnitude, producing a perfect spin Seebeck effect. These important results are elucidated through the band structures and transmission spectrum. Our findings put forward an effective route to design spin caloritronic devices, which can be applied in the future to waste heat recovery and information technology.
Subject Keywords
Surfaces, Coatings and Films
URI
https://hdl.handle.net/11511/68214
Journal
APPLIED SURFACE SCIENCE
DOI
https://doi.org/10.1016/j.apsusc.2019.06.174
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
A feasibility study for controlling self-organized production of plasmonic enhancement interfaces for solar cells
Borra, Mona Zolfaghari; Gullu, Seda Kayra; Es, Fırat; Demircioğlu, Olgu; Günöven, Mete; Turan, Raşit; Bek, Alpan (Elsevier BV, 2014-11-01)
The decoration of metal nanoparticles (MNPs) by the self-organized mechanism of dewetting is utilized as a suitable method for plasmonic interface integration to large area full-scale solar cell (SC) devices. Reflection measurements are performed on both flat and textured silicon (Si) SCs in order to investigate the local plasmonic resonances of the MNPs. The effects of particle size and thickness of silicon nitride (Si3N4)anti-reflection coating layer are investigated by reflection measurements and the shi...
Voltammetric and drift spectroscopy investigation in dithiophosphinate-chalcopyrite system
Guler, T; Hicyilmaz, C; Gokagac, G; Ekmekci, Z (Elsevier BV, 2004-11-01)
The mechanism of dithiophosphinate (DTPI) adsorption on chalcopyrite was investigated by diffuse reflectance Fourier transformation (DRIFT) spectroscopy and by cyclic voltammetry (CV) at various pHs. CV experiments showed that the redox reactions occurred at a certain degree of irreversibility on the chalcopyrite surface in the absence of a collector due to preferential dissolution of iron ions in slightly acid solution and irreversible surface coverage by iron oxyhydroxides in neutral and alkaline solution...
Multilayer graphene growth on polar dielectric substrates using chemical vapour deposition
KARAMAT, SHUMAİLA; Celik, K.; Zaman, S. Shah; Oral, Ahmet (Elsevier BV, 2018-06-01)
High quality of graphene is necessary for its applications at industrial scale production. The most convenient way is its direct growth on dielectrics which avoid the transfer route of graphene from metal to dielectric substrate usually followed by graphene community. The choice of a suitable dielectric for the gate material which can replace silicon dioxide (SiO2) is in high demand. Various properties like permittivity, thermodynamic stability, film morphology, interface quality, bandgap and band alignment...
Thermal evolution of structure and photocatalytic activity in polymer microsphere templated TiO2 microbowls
Altunöz Erdoğan, Deniz; Polat, Meryem; Garifullin, Ruslan; Guler, Mustafa O.; Ozensoy, Emrah (Elsevier BV, 2014-07-30)
Polystyrene cross-linked divinyl benzene (PS-co-DVB) microspheres were used as an organic template in order to synthesize photocatalytic TiO2 microspheres and microbowls. Photocatalytic activity of the microbowl surfaces were demonstrated both in the gas phase via photocatalytic NO(g) oxidation by O-2(g) as well as in the liquid phase via Rhodamine B degradation. Thermal degradation mechanism of the polymer template and its direct influence on the TiO2 crystal structure, surface morphology, composition, spe...
Electropolymerization of a New 4-(2,5-Di-2-thiophen-2-yl-pyrrol-1-yl)-Tetra Substituted Nickel Phthalocyanine Derivative
Yavuz, Arzu; Carbas, Buket Bezgin; Aras, Leyla; Önal, Ahmet Muhtar (Wiley, 2011-10-15)
A new tetrakis 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl) substituted nickel phthalocyanine (NiPc-SNS) was synthesized and characterized by elemental analysis, Fourier Transform Infrared (FT-IR), and UV-vis spectroscopies. The electrochemical polymerization of this newly synthesized NiPc-SNS was performed in dichloromethane (DCM)/tetrabutylammonium perchlorate (TBAP) solvent/electrolyte couple. An insoluble film was deposited on the electrode surface, both during repetitive cycling and constant potential electr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Ding, M. Wei, G. Surucu, Z. Liang, and X. Wang, “Transition metal-doped janus monolayer SMoSe with excellent thermal spin filter and spin Seebeck effect,”
APPLIED SURFACE SCIENCE
, pp. 750–756, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68214.