Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The Role of Top-Down and Bottom-Up Control for Phytoplankton in a Subtropical Shallow Eutrophic Lake: Evidence Based on Long-Term Monitoring and Modeling
Date
2020-02-03
Author
Mao, Zhigang
Gu, Xiaohong
Cao, Yong
Zhang, Min
Zeng, Qingfei
Chen, Huihui
Shen, Ruijie
Jeppesen, Erik
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
223
views
0
downloads
Cite This
Lake ecosystems are exposed to a range of anthropogenic pressures, particularly eutrophication, and in some cases also stocking and/or overfishing of top-predator fish species, all factors that have implications for the food web structure and which could lead to dominance of nuisance cyanobacteria. Restoration of degraded lakes demands insight into the relative role of top-down for bottom-up regulating forces. While knowledge about these forces in temperate lakes is extensive, comparatively little is known of their role in subtropical lakes where the importance of herbivorous and benthic feeding fish is higher. Here, we analyzed a long-term monitoring data set on subtropical, shallow Lake Taihu, China, and applied random forests regression to examine how phytoplankton was related to environmental variables and biotic assemblages. Our results indicate that the biomass and density of phytoplankton increased with increasing biomass of benthivorous and zooplanktivorous fish and decreased with increases in ammonium concentrations, the nitrogen to phosphorus ratio, and zooplankton biomass, while the response to climate fluctuations and changes in the biomass of piscivores was weak. Effects of higher trophic levels explained as much of the variance in phytoplankton biomass as did nutrients and climatic factors. Moreover, the remarkably reduced ratio of zooplankton to phytoplankton biomass and the decline in cladoceran individual biomass emphasized the increasing importance of top-down control in regulating the phytoplankton following extensive stocking. Our findings offer insight into how fish management may be combined with catchment-level restoration measures to conserve and enhance water quality.
Subject Keywords
Ecology
,
Ecology, Evolution, Behavior and Systematics
,
Environmental Chemistry
URI
https://hdl.handle.net/11511/68455
Journal
ECOSYSTEMS
DOI
https://doi.org/10.1007/s10021-020-00480-0
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Patterns of Seasonal Stability of Lake Phytoplankton Mediated by Resource and Grazer Control During Two Decades of Re-oligotrophication
Fu, Hui; Yuan, Guixiang; Özkan, Korhan; Johansson, Liselotter Sander; Sondergaard, Martin; Lauridsen, Torben L.; Jeppesen, Erik (Springer Science and Business Media LLC, 2020-09-01)
Human-induced changes in external nutrient loading affect the phytoplankton community and abundance directly by changing the amount of nutrients available, but also indirectly through changes in the zooplankton (that is, grazer) community structure, mediated in part by changes in the fish community structure and biomass. Such shifts affect the species dynamics and community succession of lake phytoplankton communities, and they may ultimately influence community stability. However, the relative importance o...
The host musselSinanodonta woodianaalleviates negative effects of a small omnivorous fish (Acheilognathus macropterus) on water quality: A mesocosm experiment
Yu, Jinlei; Xia, Manli; He, Hu; Jeppesen, Erik; Guan, Baohua; Ren, Ze; Elser, James J.; Liu, Zhengwen (University of Chicago Press, 2020-12-01)
Omnivorous fishes are prevalent in warm waters and may have strong impacts on water quality by excreting nutrients and reducing periphyton biomass. However, most studies have focused on large-sized species and overlooked the role of small omnivores. Filter-feeding mussels may modulate the negative effects of small omnivorous fishes on water quality, and stocking of mussels has been frequently used in shallow eutrophic freshwaters in China to improve the water clarity. However, the mechanisms behind such man...
Impact of biased sex ratio on the genetic diversity, structure, and differentiation of Populus nigra (European black poplar)
Yelmen, Burak; Değirmenci, Funda Ö.; Kaya, Zeki (Canadian Science Publishing, 2020-10-01)
Effective population size is a crucial concept of conservation biology. It is reduced by biased sex ratio, consequently causing loss of genetic variation. To evaluate genetic diversity related to gender, and investigate the possible effects of biased sex ratio, we analyzed available microsatellite DNA markers from 120 samples of Populus nigra L. (European black poplar) originating from five geographical regions in Turkey. Using 12 microsatellite markers, we detected 60 clones of the same genotype, out of 12...
Do interactions between eutrophication and CO2 enrichment increase the potential of elodeid invasion in tropical lakes?
Mormul, Roger Paulo; Thomaz, Sidinei Magela; Jeppesen, Erik (Springer Science and Business Media LLC, 2020-09-01)
Understanding the roles of eutrophication and CO2 enrichment in the invasive success of aquatic plants is an ecological challenge with relevance to climate change. We tested the hypotheses that (1) eutrophication of freshwaters increases the invasive success of the submersed aquatic plant Hydrilla verticillata; (2) CO2-enrichment makes freshwater systems more prone to H. verticillata invasion; and (3) interactions between eutrophication and CO2 enrichment increase the potential of H. verticillata invasion. ...
Variation in growth, reproduction, and resource allocation in an aquatic plant,Vallisneria spinulosa: the influence of amplitude and frequency of water level fluctuations
Li, Lei; Ding, Mingming; Jeppesen, Erik (Springer Science and Business Media LLC, 2020-09-01)
Water level fluctuations (WLF), one of the most affected ecological drivers by climate change, are dominant forces controlling submerged macrophyte performance and distribution in freshwater ecosystems. Submerged macrophytes are prominent components of shallow lakes, predicting their response to WLF is therefore crucial for the management and conservation of these valuable and vulnerable ecosystems. We conducted an experiment in 15 outdoor mesocosms to explore the influence of WLF on the performance ofValli...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Mao et al., “The Role of Top-Down and Bottom-Up Control for Phytoplankton in a Subtropical Shallow Eutrophic Lake: Evidence Based on Long-Term Monitoring and Modeling,”
ECOSYSTEMS
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68455.