A novel biodegradable PCL film for tendon reconstruction: Achilles tendon defect model in rats

2003-09-01
Kazimoglu, C
Bolukabsi, S
Kanatli, U
Senkoylu, A
Altun, NS
Babac, C
Yavuz, H
Piskin, E
This study aims to investigate applicability of poly(E-caprolactone) (PCL) biodegradable films for repair of gaps in Achilles tendons in a rat model, also comparing surgical repair versus no repair approaches. PCL was synthesized with tailor-made properties, then, PCL films were prepared by solvent casting. Seventy-five outbred Sprague-Dawley rats were randomly allocated into five groups: (i) sham operated (skin incision only); (ii) no repair (complete division of the Achilles tendon and plantaris tendon without repair); (iii) Achilles repair (with a modified Kessler type suture); and (iv) plasty of Achilles tendon defects with the biodegradable PCL films, and (v) animals subjected to 1cm, mid-substance defect with no repair. Functional performance was determined from the measurements of hindpaw prints utilizing the Achilles functional index. The animals were killed 8 weeks after surgery and histological and biomechanical evaluations were made. All groups subjected to Achilles tendon division had a significant functional impairment that gradually improved so that by day 28 there were no functional impairments in any group whereas animals with a defect remained impaired. The magnitude of the biomechanical and morphological changes at postoperative 8 weeks were similar for no repair group (conservative), Achilles repair group and tendonplasty group (biodegradable PCL film group). The initial rate of functional recovery was significantly different for primary suture, Achilles repair group and PCL film group (p>0.01). But, at the 28th day, functional recovery was quite similar to the other groups. In summary, our results suggest that the PCl film can be an alternative biomaterial for tendon replacement.
INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS

Suggestions

THE MECHANICAL CHARACTERIZATION AND IN VIVO EVALUATION OF POROUS TiNi AS GRAFT MATERIAL
Arpak, Bertan; Araz, Kenan; Nakas, Ipek; Bor, Sakir; Nergiz, Ibrahim (2012-09-01)
To obtain TiNi foams with interconnected pores that have surface quality necessary for bone growth in addition to required mechanical performance, sintering with the space holder technique was employed in this study, which aimed to evaluate the bone healing process of TiNi graft materials. For this purpose, processed TiNi foams with three different porosities were placed into the created defects in the femur of rats. Moreover, the mechanical properties of the processed TiNi foams were conducted via monotoni...
A PHASE FIELD APPROACH TO MODEL FRACTURE OF ARTERIAL WALLS
GÜLTEKİN, Osman; Dal, Hüsnü; HOLZAPFEL, Gerhard A (2016-06-10)
This study uses a recently developed phase-field approach to model fracture of arterial walls with an emphasis on aortic tissues. We start by deriving the regularized crack surface to overcome complexities inherent in sharp crack discontinuities, thereby relaxing the acute crack surface topology into a diffusive one. In fact, the regularized crack surface possesses the property of Gamma-Convergence, i.e. the sharp crack topology is restored with a vanishing length-scale parameter. Next, we deal with the con...
An Experimental study of mechanical properties of non enzymatically glycated bovine femur cortical bone
Fındıkoğlu, Gülin; Evis, Zafer; Department of Engineering Sciences (2012)
The aim of this study is to investigate the deterioration in mechanical integrity of the collagen network in bovine bone with aging, which are related to fracture toughness. Age-related changes in collagen molecular structures formed by non-enzymatic glycation were examined and indentation fracture technique was used as a method for measuring the microstructural toughness of cortical bone. Microcrack propagation characteristics of bone for fragility were also studied. Young and old group of bovine cortical ...
A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features
Jodati, Hossein; Yilmaz, Bengi; Evis, Zafer (Elsevier BV, 2020-07-01)
Tissue engineering has acquired remarkable attention as an alternative strategy to treat and restore bone defects during recent years. A scaffold is a fundamental component for tissue engineering, on which cells attach, proliferate and differentiate to form new desirable functional tissue. The composition, and structural features of scaffolds, including porosity and pore size, play a fundamental role in the success of tissue-engineered construct. This review summarizes the effect of porosity and pore size o...
The Relationship Between Arthroplasty Surgeons' Experience Level and Optimal Cable Tensioning in the Fixation of Extended Trochanteric Osteotomy
Başarır, Kerem ; Kalem, Mahmut ; Şahin, Ercan; Özbek, Emre Anıl; Karaca, Mustafa Onur ; Kucukkarapinar, Ibrahim; Tönük, Ergin (2021-12-01)
Introduction: In this study, our aim was to examine the relationship between the arthroplasty surgeons' experience level and their aptitude to adjust the cable tension to the value recommended by the manufacturer when asked to provide fixation with cables in artificial bones that underwent extended trochanteric osteotomy (ETO). Materials and Methods: A custom-made cable tensioning device with a microvoltmeter was used to measure the tension values in Newtons (N). An ETO was performed on 4 artificial femur b...
Citation Formats
C. Kazimoglu et al., “A novel biodegradable PCL film for tendon reconstruction: Achilles tendon defect model in rats,” INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, pp. 804–812, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68472.