Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Noise prediction of a transonic cavity flow via shear-layer-adapted delayed detached-eddy simulation
Date
2018-01-01
Author
Yalçın, Özgür
Özyörük, Yusuf
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
240
views
0
downloads
Cite This
© 2018 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.An open cavity flow contains a highly turbulent shear layer which separates from the upstream edge and impinges on the aft wall of the cavity, causing intense noise emission. In this study, a delayed detached-eddy simulation (DDES) with the use of "shear-layer-adapted" subgrid length scale, an enhancement of DDES available in literature, is conducted for such an open cavity flow problem. The results show that this length scale unlocks the Kelvin-Helmholtz (K-H) instability, and accelerates the transition from modeled to resolved mode of DDES. Thus, the accuracy of capturing the flow profile near the shear layer separation zone, where K-H instability is dominant, increases. However, quite dense mesh resolution is required to simulate the aft wall region due to the log layer mismatch problem of DDES. On the other hand, the frequencies of dominant pressure modes are predicted accurately.
URI
https://hdl.handle.net/11511/68882
DOI
https://doi.org/10.2514/6.2017-3215
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Aerodynamic parameter estimation of a supersonic air to air missile with rapid speed variation
Bayoglu, Tugba; Nalci, Mehmet Ozan; Kutay, Ali Türker (2016-01-01)
© 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.Maneuver inputs designed for aircraft parameter identification are often applied during the aircraft flies close to a trimmed flight condition at an approximately constant Mach number. Since a fixed wing aircraft has control over its thrust and speed, various maneuver inputs can be applied to identify aerodynamic derivatives at discrete Mach numbers. On the contrary, most agile missile configurations do not have contr...
Experimental design and statistical modeling methodology for wind tunnel aerodynamics of an agile missile to improve the simulation accuracy and performance
Savas, Ozgun; Topbas, Eren; Unal, Kenan; Karaca, H. Deniz; Kutay, Ali Türker (2018-01-01)
© 2018, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.Wind tunnel testing is an essential procedure to investigate the aerodynamics forces and moments. In this paper, a methodology is presented to perform such test in an efficient way. Experimental design process is carried out before the testing in order to cover the flight regime as much as possible with the least possible number of tests. After the determination of the test matrix and conducting the wind-on tests, the ...
Multi-Fidelity Aerodynamic Dataset Generation of a Fighter Aircraft with a Deep Neural-Genetic Network
Millidere, Murat; Gomec, Fazil Selcuk; Kurt, Huseyin Burak; Akgül, Ferhat (2021-01-01)
© 2021, American Institute of Aeronautics and Astronautics Inc.. All rights reserved.This paper is a follow-up study on prior research work on multi-fidelity aerodynamic dataset generation. The prior work studied a comparison of modified Variable-Complexity Modelling and co-Kriging methods applied to F-16 fighter aircraft. In this research, the multi-fidelity deep neural-genetic network method is introduced. The results provide evidence that the deep neural-genetic network method in this paper can be employ...
Analysis and design optimization of three dimensional nozzles
Yildizlar, B.; Eyi, Sinan (2014-01-01)
© 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.The aim of this study is to develop analysis and design optimization method for three dimensional nozzles. For analysis, three dimensional Euler equations are solved using both Newton and Newton-GMRES methods and their performances are compared. The Jacobian matrix needed for Newton method is evaluated analytically. Newton-GMRES method is a matrix free solution technique hence it does not require the Jacobian matrix e...
Analysis and adjoint design optimization of hypersonic blunt bodies
Piskin, Tugba; Eyi, Sinan (2014-01-01)
© 2014 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.The main purpose of this study is to analyze hypersonic flow field around the blunt bodies and to design of that bodies in order to obtain minimum pressure drag. Modeling of non-equilibrium must be done properly. In this study, non-equilibriums of thermal and chemical modes are considered. Translational and rotational energy modes are assumed that energy exchange between these modes is so fast. Vibrational and electro...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Yalçın and Y. Özyörük, “Noise prediction of a transonic cavity flow via shear-layer-adapted delayed detached-eddy simulation,” 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68882.