Design, simulation, and fabrication of cubesat antenna systems

Dolapçı, Türker
This study aims to design, simulate, and fabricate on-board and ground station antenna systems for CubeSats, i.e., the most affordable space missions. An on-board UHF turnstile antenna system is optimized in simulation evironment in accordance with different pattern requirements, by changing the orientation of the antenna arms. In order to feed the turnstile antenna arms by successive 90◦ phase differences between them, a four-way quadrature splitter circuit is designed and fabricated. Antenna pattern measurement is conducted in anechoic chamber by connecting the monopole antenna arms to the fabricated power splitter circuit, while the arms are oriented in the optimized directions and placed on a generic 1U CubeSat platform. In addition to the fabricated UHF turnstile antenna, a novel dual-band V/UHF trapped turnstile antenna involving traps on the antenna arms is designed in simulation environment. On the other side, a circularly polarized VHF ground station Yagi antenna system is designed to achieve optimum gain and size, and it is also fabricated by using low-cost materials to be employed for amateur radios. In addition to the radiating metal structure, the VHF Yagi antenna system includes a Wilkinson power divider and impedance matching baluns fabricated by coaxial transmission lines. Besides the reflection coefficient measurements, the constructed ground station antenna system is used for the reception of a Slow Scan TV (SSTV) image broadcasted by International Space Station (ISS) to test its functionality. Finally, as another component of a sub-GHz CubeSat ground station, a circularly polarized UHF Yagi antenna system is designed, based on the experience gained from the VHF ground station antenna design and measurement.


Design of an active microstrip array using a microwave circuit simulator
Demir, S; Toker, Canan; Hizal, A (1997-02-26)
An active antenna array design and simulation of this design with a microwave circuit simulator are presented. This active antenna array is a TV receive only (TVRO) antenna operating at 10 GHz. It is a 8x4 array of rectangular microstrip patch antennas. Eight low noise pHEMTs are placed in the antenna. Passive antenna characteristics are usually obtained by analytical techniques or using special softwares for this purpose. The numerical representation as well as the nonreciprocal nature of the active device...
Design and analysis of ultra-wideband (UWB) printed monopole antennas of circular shape
Karadağ, Serkan; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2017)
This study proposes three microstrip line fed circular monopole antennas with ultra-wideband (UWB) characteristics, improved omnidirectional radiation pattern and WLAN (5 GHz-6 GHz) band notched characteristics for wireless and mobile communication systems. In this thesis, first, a microstrip line fed ultra-wideband ring monopole antenna with improved omnidirectional radiation pattern is designed, fabricated and measured. Two corners are tapered on the ground plane for increasing impedance bandwidth. In ord...
Development of multiband microstrip antennas for GPS applications
Önder, Mustafa Caner; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2019)
In this thesis study, the design, fabrication and measurements of dualband and triband circularly polarized microstrip antennas for GPS applications are presented. Characteristic mode analysis technique is applied to get an insight into circularly polarized patch antennas. A design flow is presented for a circularly polarized L1 GPS band microstrip antenna by using characteristic mode analysis. A single fed L1/L2 GPS band right hand circularly polarized four-slotted patch antenna is designed by using reacti...
Wideband omnidirectional and sector coverage antenna arrays for base stations
Alatan, Lale (2018-01-01)
By using parallel strip line fed printed dipole antennas as array elements, an omnidirectional antenna array and a wide angle sector coverage array operating in octave band are designed. A maximum deviation of ±1.25 dB from the omnidirectional pattern is achieved for the omnidirectional array, and the average gain of the antenna was measured as being 5 dB in the 1.35–2.7GHz band. For the sector coverage array, a special reflector design is utilized to maintain a half power beam width of around 115◦ with a s...
Analysis of a calibration method for airborne receive-only phased array antennas with self-alignment
Elik, Furkan Bahadır; Demir, Şimşek; Department of Electrical and Electronics Engineering (2022-9-15)
The calibration of the phased array antennas plays crucial role to ensure the performance of the beam steering capability. Most of the guided missiles utilize phased arrays, thus, the calibration routines should be optimized. Since guided missiles are spatially limited, calibration hardware should not introduce new geometry to the antenna. This limits possible calibration methods of the antennas on the missiles. This study develops a calibration method for semi-active guided missiles and analyzes this metho...
Citation Formats
T. Dolapçı, “Design, simulation, and fabrication of cubesat antenna systems,” M.S. - Master of Science, Middle East Technical University, 2020.