Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
COMPUTATION OF PHYSICAL OPTICS INTEGRAL BY LEVIN'S INTEGRATION ALGORITHM
Date
2009-01-01
Author
Durgun, Ahmet Cemal
Kuzuoğlu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
232
views
0
downloads
Cite This
In this paper, a novel algorithm for computing Physical Optics (PO) integrals is introduced. In this method, the integration problem is converted to an inverse problem by Levin's integration algorithm. Furthermore, the singularities, that are possible to occur in the applications of Levin's method, are handled by employing trapezoidal rule together with Levin's method. Finally, the computational accuracy of this new method is checked for some radar cross section (RCS) estimation problems performed on flat, singly-curved and doubly-curved PEC plates which are modeled by 8-noded isoparametric quadrilaterals. The results are compared with those obtained by analytical and brute force integration.
URI
https://hdl.handle.net/11511/69339
Journal
PROGRESS IN ELECTROMAGNETICS RESEARCH M
DOI
https://doi.org/10.2528/pierm09020204
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Derivation and analysis of near field tofar field transformation algorithm for spherical scanning
Korkmaz, Hülya; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2019)
This thesis focuses on the improvement of a far field transformation algorithm of spherical near field scanning by using different quadrature techniques for numerical integration process. In this thesis, spherical vector wave expansion of E field is studied and numerical calculation for expansion coefficients of E field is performed. In the scope of this study quadrature techniques like Gauss, Trapezoid and Simpsons are investigated and advantages and disadvantages of these techniques are discussed. A decis...
Computation of the Primary Decomposition of Polynomial Ideals Using Gröbner Bases
Tolgay, Betül; Karayayla, Tolga; Department of Mathematics (2021-8-06)
In this thesis, we investigate algorithms for computing primary decompositions of ideals in polynomial rings. Every ideal in a polynomial ring over a Noetherian commutative ring with identity has a primary decomposition, that is, it can be expressed as the intersection of primary ideals (in a unique way or not). The existence of primary decompositions in such polynomial rings is a result of the ascending chain condition and the existence proof does not suggest any construction method for the primary compone...
Efficient Computation of Green's Functions for Multilayer Media in the Context of 5G Applications
Mittra, Raj; Özgün, Özlem; Li, Chao; Kuzuoğlu, Mustafa (2021-03-22)
This paper presents a novel method for effective computation of Sommerfeld integrals which arise in problems involving antennas or scatterers embedded in planar multilayered media. Sommerfeld integrals that need to be computed in the evaluation of spatial-domain Green's functions are often highly oscillatory and slowly decaying. For this reason, standard numerical integration methods are not efficient for such integrals, especially at millimeter waves. The main motivation of the proposed method is to comput...
Application of ODSA to population calculation
Ulukaya, Mustafa; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (2006)
In this thesis, Optimum Decoding-based Smoothing Algorithm (ODSA) is applied to well-known Discrete Lotka-Volterra Model. The performance of the algorithm is investigated for various parameters by simulations. Moreover, ODSA is compared with the SIR Particle Filter Algorithm. The advantages and disadvantages of the both algorithms are presented.
Intelligent analysis of chaos roughness in regularity of walk for a two legged robot
Kaygisiz, BH; Erkmen, İsmet; Erkmen, Aydan Müşerref (Elsevier BV, 2006-07-01)
We describe in this paper a new approach to the identification of the chaotic boundaries of regular (periodic and quasiperiodic) regions in nonlinear systems, using cell mapping equipped with measures of fractal dimension and rough sets. The proposed fractal-rough set approach considers a state space divided into cells where cell trajectories are determined using cell to cell mapping technique. All image cells in the state space, equipped with their individual fractal dimension are then classified as being ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. C. Durgun and M. Kuzuoğlu, “COMPUTATION OF PHYSICAL OPTICS INTEGRAL BY LEVIN’S INTEGRATION ALGORITHM,”
PROGRESS IN ELECTROMAGNETICS RESEARCH M
, pp. 59–74, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69339.