Derivation and analysis of near field tofar field transformation algorithm for spherical scanning

Download
2019
Korkmaz, Hülya
This thesis focuses on the improvement of a far field transformation algorithm of spherical near field scanning by using different quadrature techniques for numerical integration process. In this thesis, spherical vector wave expansion of E field is studied and numerical calculation for expansion coefficients of E field is performed. In the scope of this study quadrature techniques like Gauss, Trapezoid and Simpsons are investigated and advantages and disadvantages of these techniques are discussed. A decision criteria of quadrature technique for a particular function is also discussed and efficiency of these techniques is compared. Spherical far field transformation algorithm considered in this study is applied to electric and magnetic Hertzian dipoles (directed on z axis and located at (0,0,0)) and expansion coefficients are calculated with Gauss, Trapezoid and Simpsons quadrature. Also, expansion coefficients of Hertzian dipoles directed along the x axis and shifted along the z axis are calculated by using coordinate transformation and rotation. After the calculations of expansion coefficients, far field transformation is performed by using derived algorithm and far field radiations are plotted. This study is mainly devoted on the far field transformation of a spherically scanned near field data and transformation of this data is performed by applying near field to far field transformation algorithm with Trapezoid and Simpsons quadrature techniques and effectiveness of these two techniques is discussed. This study also includes the derivation of probe compensation algorithm to eliminate the probe effects from transformed data. In chapter 5, probe compensated coefficients are calculated by considering the coefficients of the probe and using the coordinate transformation and rotation. (See Appendix A and Appendix B). Far field pattern by using compensated coefficients is also analyzed to visualize the probe compensation effect.

Suggestions

ANALYSIS OF MILLIMETER WAVE-GUIDES ON ANISOTROPIC SUBSTRATES USING THE 3-DIMENSIONAL TRANSMISSION-LINE MATRIX-METHOD
BULUTAY, C; PRASAD, S (1993-06-01)
Three-dimensional condensed asymmetrical node, variable grid, transmission-line matrix (TLM) method has been used in analyzing several millimeter waveguides on anisotropic substrates. The dispersion characteristics of image guides together with field and energy confinement properties at millimeter-wave frequencies have been investigated. Edge coupled microstrip line on a uniaxial substrate is analyzed for the even and odd mode dispersion characteristics. Finally the same analysis is repeated for bilateral f...
Evaluation of discrete ordinates method for radiative transfer in rectangular furnaces
Selçuk, Nevin (1997-01-01)
The discrete ordinates method (DOM) and discrete transfer method (DTM) were evaluated from the viewpoints of both predictive accuracy and computational economy by comparing their predictions with exact solutions available from a box-shaped enclosure problem with steep temperature gradients. Comparative testing shows that the S-4 approximation produces better accuracy in radiative energy source term than in flux density in three orders of magnitude less CPU time than that required by the DTM. The S-4 approxi...
Analysis of single Gaussian approximation of Gaussian mixtures in Bayesian filtering applied to mixed multiple-model estimation
Orguner, Umut (Informa UK Limited, 2007-01-01)
This paper examines the effect of the moment-matched single Gaussian approximation, which is made in various multiple-model filtering applications to approximate a Gaussian mixture, on the Bayesian filter performance. The estimation error caused by the approximation is analysed for both the prediction and the measurement updates of a Bayesian filter. An approximate formula is found for the covariance of the error caused by the approximation for a general Gaussian mixture with arbitrary components. The calcu...
Implementation of generalized Harvey-Shack theory in light scattering from rough surfaces
Gunoven, M.; Nasser, H.; Ünal, Mustafa; Aytekin, O.; Turan, Raşit; Bek, Alpan (2020-12-01)
We present a discrete implementation of generalized Harvey-Shack scalar scattering theory to calculate angular intensity distributions from height profiles of select randomly textured surfaces proposed for use in solar cells and covering a wide range of surface characteristics. We compare these calculations to high-resolution angular intensity distribution measurements. These comparisons suggest that the pupil function does benefit from an additional correction factor for rough surfaces containing lateral f...
COMPUTATION OF PHYSICAL OPTICS INTEGRAL BY LEVIN'S INTEGRATION ALGORITHM
Durgun, Ahmet Cemal; Kuzuoğlu, Mustafa (2009-01-01)
In this paper, a novel algorithm for computing Physical Optics (PO) integrals is introduced. In this method, the integration problem is converted to an inverse problem by Levin's integration algorithm. Furthermore, the singularities, that are possible to occur in the applications of Levin's method, are handled by employing trapezoidal rule together with Levin's method. Finally, the computational accuracy of this new method is checked for some radar cross section (RCS) estimation problems performed on flat, ...
Citation Formats
H. Korkmaz, “Derivation and analysis of near field tofar field transformation algorithm for spherical scanning,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Electrical and Electronics Engineering., Middle East Technical University, 2019.