Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
Analysis and design optimization of blunt bodies in hypersonic flow
Date
2014-01-01
Author
Piskin, Tugba
Eyi, Sinan
Yumusak, Mine
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
9
views
0
downloads
Cite This
The purpose of this study is to model hypersonic flow around blunt body especially in atmospheric reentry of Earth. The more detailed model contains each energy transformation between each energy modes and all reactions. To simulate flow field region, thermal and chemical nonequilibrium must be considered all together. For the chemical nonequilibrium, species masses production of reactions must be characterized with suitable model. In this study, flow analysis based on the finite rate chemical reaction equations. Flow field region is assumed as continuum. Also flow is considered as inviscid and there is no diffusion. Computation of flow field is based on the axisymmetric Euler code. Coupled equations, chemical and thermal nonequilibrium equations are solved by using Newton's method. Jacobian matrices are calculated analytically. In the design part, aim is to obtain reduced pressure drag while keeping the body as blunt. Optimization results for various situations are represented.
URI
https://hdl.handle.net/11511/69457
DOI
https://doi.org/10.2514/6.2014-3255
Collections
Department of Aerospace Engineering, Conference / Seminar
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Piskin, S. Eyi, and M. Yumusak, “Analysis and design optimization of blunt bodies in hypersonic flow,” 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69457.