Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Pilot-scale outdoor photofermentative hydrogen production from molasses using pH control
Date
2020-01-01
Author
Oflaz, F. Betül
Koku, Harun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
248
views
0
downloads
Cite This
© 2020 Hydrogen Energy Publications LLCThe duration of photofermentative hydrogen production from sugar-based nutrients is limited by gradual acidification caused by the production of organic acids, leading to suboptimal pH. To address this issue, a custom pH control system was built and installed on a 20 L tubular photobioreactor, and operated under outdoor conditions. Long-term, single-stage hydrogen production from molasses was achieved using the purple non-sulfur bacterium, Rhodobacter capsulatus. The run lasted for 48 days, the longest duration achieved in a tubular photobioreactor on molasses as the only feed. pH was maintained close to its optimum value. High-purity hydrogen (above 90% by mole, on average) and near-complete conversion of sucrose was observed. The highest hydrogen productivity was 0.69 molH2/(m3.h). On the other hand, hydrogen production was observed to cease after periods of activity. Production resumed after dilution followed by artificial illumination, indicating that the production activity could be recovered during prolonged runs.
Subject Keywords
Fuel Technology
,
Renewable Energy, Sustainability and the Environment
,
Energy Engineering and Power Technology
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/69571
Journal
International Journal of Hydrogen Energy
DOI
https://doi.org/10.1016/j.ijhydene.2020.10.086
Collections
Department of Chemical Engineering, Article
Suggestions
OpenMETU
Core
Development of non-noble Co–N–C electrocatalyst for high-temperature proton exchange membrane fuel cells
Eren, Enis Oğuzhan; Özkan, Necati; Devrim, Yılser (Elsevier BV, 2020-11-27)
© 2020 Hydrogen Energy Publications LLCThe development of a non-noble Co–N/MWCNT (MWCNT = multi-walled carbon nanotubes) electrocatalyst is achieved through the high-temperature pyrolysis method and successfully characterized by five-step physico-chemical analysis. By utilizing high-resolution analytical surface characterization methods, the chemical states of elements are determined, and the presence of Co-Nx sites is confirmed. ORR activity of a Co–N/MWCNT is found to be auspicious. The maximum number of ...
Factors affecting the longterm stability of biomass and hydrogen productivity in outdoor photofermentation
Androga, Dominic Deo; Ozgur, Ebru; Guncluz, Ufuk; Yucel, Meral; Eroğlu, İnci (Elsevier BV, 2011-08-01)
In this study, the long-term stability of biomass and hydrogen production on acetate by Rhodobacter capsulatus YO3 (hup(-)) was investigated. The experiments were performed in fed-batch panel photobioreactors operated under the natural sunlight in Ankara, Turkey. They were carried out between October and December in order to resemble low temperature and low light intensity and between July and August in order to resemble high temperature and high light intensity.
Microarray analysis of high light intensity stress on hydrogen production metabolism of Rhodobacter capsulatus
Gurgan, Muazzez; Koku, Harun; EROĞLU, İNCİ; Yucel, Meral (Elsevier BV, 2020-01-29)
Biohydrogen obtained from purple non sulfur bacteria (PNSB) is an environmentally friendly alternative for hydrogen production. PNSB can be employed in large scale outdoor photobioreactors to produce hydrogen by photofermentation with sunlight as the light source. In external environmental conditions, however, bacteria can experience stress due to high light intensities, which can inhibit or slow down hydrogen production. Previous studies with other PNSB showed varying responses to light intensities (above ...
Enhancement of hydrogen storage capacity of multi-walled carbon nanotubes with palladium doping prepared through supercritical CO2 deposition method
ERÜNAL, EBRU; Ulusal, Fatma; ASLAN, MUSTAFA YASİN; GÜZEL, BİLGEHAN; Üner, Deniz (Elsevier BV, 2018-06-07)
Pd doped Multi-Walled Carbon Nanotubes were prepared via supercritical carbon dioxide deposition method in order to enhance the hydrogen uptake capacity of carbon nanotubes at ambient conditions. A new bipyridyl precursor that enables reduction at moderate conditions was used during preparation of the sample. Both XRD analyses and TEM images confirmed that average Pd nanoparticle size distribution was around 10 nm. Hydrogen adsorption and desorption experiments at room temperature with very low pressures (0...
Design of an outdoor stacked - tubular reactor for biological hydrogen production
KAYAHAN, Emine; Eroglu, Inci; Koku, Harun (Elsevier BV, 2016-11-02)
Photofermentation is one alternative to produce hydrogen sustainably. The photobioreactor design is of crucial importance for an economically feasible operation, and an optimal design should provide uniform velocity and light distribution, low pressure drop, low gas permeability and efficient gas-liquid separation. A glass, stacked tubular bioreactor aimed at satisfying these criteria has been designed for outdoor photofermentative hydrogen production by purple non sulfur bacteria. The design consists of 4 ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. B. Oflaz and H. Koku, “Pilot-scale outdoor photofermentative hydrogen production from molasses using pH control,”
International Journal of Hydrogen Energy
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69571.