PASSIVATION OF SILICON SOLAR CELLS VIA LOW TEMPERATURE WET CHEMICAL OXIDATION

2016-12-01
KÖKBUDAK, GAMZE
Çiftpınar, Emine Hande
DEMİRCİOĞLU, OLGU
Turan, Raşit
In the development of high efficiency crystalline Si solar cells, decreasing bulk and surface recombination velocities of the minority carriers is vital. As the bulk recombination could be suppressed by enhancing the material quality, the effect of surface recombination on cell performance becomes more dominant. Also, recent studies have revealed that the area under the metal contacted region needs to be passivated to minimize the carrier recombination. The passivation of front and back surface of the cell can be achieved using different techniques and materials. Dry oxidation is a well-known process by the industry and requires high temperature treatment that increases thermal budget of the whole fabrication sequence and also degrades bulk lifetime. For this reason, a low temperature technique like wet chemical oxidation is highly desirable for the growth of thin oxide layers. In this work, 4 different wet chemical oxidation techniques based on nitric acid (HNO3), hydrogen peroxide (H2O2), RCA II (HCl: H2O2) and hydrochloric acid (HCl) solutions were studied and corresponding cell performances was compared with that of dry oxidation.

Suggestions

Selective emitter formation via single step doping through laser patterned mask oxide layer for monocrystalline silicon solar cells
Çiftpınar, Emine Hande; Turan, Raşit; Department of Physics (2014)
Selective emitter is one of the new approaches for higher efficiency solar cells. Although selective emitter cells could be processed by several different methods such as; etch back process, laser doping, ion implantation, doping paste, a different method based on diffusion through a laser patterned oxide layer was studied in this thesis. Utilization of pattern oxide layer as a diffusion barrier enables to obtain selective emitter profile via single step doping which reduces overall production cost and time...
Thin film (6,5) semiconducting single-walled carbon nanotube metamaterial absorber for photovoltaic applications
Obaidullah, Madina; Esat, Volkan; Sabah, Cumali (2017-12-01)
A wide-band (6,5) single-walled carbon nanotube metamaterial absorber design with near unity absorption in the visible and ultraviolet frequency regions for solar cell applications is proposed. The frequency response of the proposed design provides wide-band with a maximum of 99.2% absorption. The proposed design is also simulated with (5,4), (6,4), (7,5), (9,4), and (10,3) chiralities, and results are compared to show that the proposed design works best with (6,5) carbon nanotube (CNT) but also good for ot...
Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers
Ustunsoy, Mehmet Pasa; Sabah, Cumali (2016-12-05)
In this paper, a dual-band high-frequency metamaterial absorber based on patch resonator is designed and analyzed for solar cells. In order to obtain a metamaterial absorber, metal-semiconductor-metal layers are combined. The results of the designed structure are shown in the infrared and visible ranges of solar spectrum. Structural parameters and dimensions of the device have a significant importance on the performance of the designed absorber. The simulations are carried out with full-wave electromagnetic...
Surface modification of multi-crystalline silicon in photovoltaic cell by laser texturing
Radfar, Behrad; Turan, Raşit; Yerci, Selçuk; Department of Micro and Nanotechnology (2019)
Surface of crystalline silicon solar cell plays an important role in its performance. It affects the optical properties which can be determined by surface’ reflectance. To minimize the reflection from the flat surface, thus, improve light trapping, the crystalline silicon wafers must be textured. Through the texturing process, roughness is introduced at the surface, so the incident light has a larger probability of being absorbed into the solar cell. Monocrystalline silicon solar cells can typically be text...
Simulation Studies of Hole Textured and Planar Microcrystalline Silicon Solar Cell at Different Zenith Angle
Zainab, Sana; Hussain, Shahzad; Altinoluk, Serra H.; Turan, Raşit (2017-09-23)
Efficiency of solar cell greatly depends on its interaction with input solar irradiance. For highly efficient solar cell, absorption of input light should be maximum at all angles. Different surface texturing techniques like pyramid texturing, cone texturing, pillar texturing have been used to increase absorption of light in solar cell. Micro-hole Surface texturing is getting popular in absorption of solar radiation at higher zenith angle. In this paper, effect of varying zenith angle on hole textured solar...
Citation Formats
G. KÖKBUDAK, E. H. Çiftpınar, O. DEMİRCİOĞLU, and R. Turan, “PASSIVATION OF SILICON SOLAR CELLS VIA LOW TEMPERATURE WET CHEMICAL OXIDATION,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69597.