Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Robust Adaptive Kalman Filter for estimation of UAV dynamics in the presence of sensor/actuator faults
Date
2013-07-01
Author
Hacızade, Cengiz
Söken, Halil Ersin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
In this paper a Robust Adaptive Kalman Filter (RAKF) is introduced. The RAKF incorporates measurement and process noise covariance adaptation procedures (R and Q adaptation respectively) and utilizes adaptive factors in order to adapt itself against sensor/actuator faults. Thus the filter stands robust against the faults and even in case of sensor/actuator failure keeps providing accurate estimation results. In a single algorithm, the RAKF detects the fault, isolates it and applies the required adaptation process such that the estimation characteristic is not deteriorated. The performance of the proposed RAKF is investigated by simulations for the state estimation procedure of an Unmanned Aerial Vehicle. (C) 2012 Elsevier Masson SAS. All rights reserved.
URI
https://hdl.handle.net/11511/69762
Journal
AEROSPACE SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1016/j.ast.2012.12.003
Collections
Department of Aerospace Engineering, Article