Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Robust Adaptive Kalman Filter for estimation of UAV dynamics in the presence of sensor/actuator faults
Date
2013-07-01
Author
Hacızade, Cengiz
Söken, Halil Ersin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
145
views
0
downloads
Cite This
In this paper a Robust Adaptive Kalman Filter (RAKF) is introduced. The RAKF incorporates measurement and process noise covariance adaptation procedures (R and Q adaptation respectively) and utilizes adaptive factors in order to adapt itself against sensor/actuator faults. Thus the filter stands robust against the faults and even in case of sensor/actuator failure keeps providing accurate estimation results. In a single algorithm, the RAKF detects the fault, isolates it and applies the required adaptation process such that the estimation characteristic is not deteriorated. The performance of the proposed RAKF is investigated by simulations for the state estimation procedure of an Unmanned Aerial Vehicle. (C) 2012 Elsevier Masson SAS. All rights reserved.
URI
https://hdl.handle.net/11511/69762
Journal
AEROSPACE SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1016/j.ast.2012.12.003
Collections
Department of Aerospace Engineering, Article
Suggestions
OpenMETU
Core
Robust Self-adaptive Kalman Filter with the R and Q Adaptations against Sensor/Actuator Failures
Söken, Halil Ersin (NOVA Science Publishers , 2013-09-01)
In this chapter a Robust Self-Adaptive Kalman Filter (RSAKF) algorithm with the filter gain correction is developed for the case of sensor/actuator malfunctions. The proposed RSAKF utilizes timevariable factors in order to reduce the effect of the faults on the estimation procedure. In this sense, the procedures with single and multiple factors for the adaptation of the filter are presented. In the first case, the filter is adapted by using single adaptive factor as a corrective term on the filter gain whil...
Estimation of pico-satellite attitude dynamics and external torques via Unscented Kalman Filter
Söken, Halil Ersin (FapUNIFESP (SciELO), 2014-01-01)
In this study, an Unscented Kalman Filter (UKF) algorithm is designed for estimating the attitude of a picosatellite and the in-orbit external disturbance torques. The estimation vector is formed by the satellite's attitude, angular rates, and the unknown constant components of the external disturbance torques acting on the satellite. The gravity gradient torque, residual magnetic moment, sun radiation pressure and aerodynamic drag are all included in the estimated external disturbance torque vector. The sa...
Analysis of single Gaussian approximation of Gaussian mixtures in Bayesian filtering applied to mixed multiple-model estimation
Orguner, Umut (Informa UK Limited, 2007-01-01)
This paper examines the effect of the moment-matched single Gaussian approximation, which is made in various multiple-model filtering applications to approximate a Gaussian mixture, on the Bayesian filter performance. The estimation error caused by the approximation is analysed for both the prediction and the measurement updates of a Bayesian filter. An approximate formula is found for the covariance of the error caused by the approximation for a general Gaussian mixture with arbitrary components. The calcu...
Robust Estimation of UAV Dynamics in the Presence of Measurement Faults
Hacızade, Cengiz; Söken, Halil Ersin (American Society of Civil Engineers (ASCE), 2012-01-01)
This study introduces a robust Kalman filter (RKF) with a filter-gain correction for cases of measurement malfunctions. Using defined variables called measurement-noise scale factors, the faulty measurements are taken into consideration with a small weight and the estimations are corrected without affecting the characteristics of the accurate ones. In this study, RKF algorithms with single and multiple scale factors are proposed and applied for the state estimation process of an unmanned aerial vehicle (UAV...
Interacting multiple model probabilistic data association filter using random matrices for extended target tracking
Özpak, Ezgi; Orguner, Umut; Department of Electrical and Electronics Engineering (2018)
In this thesis, an Interacting Multiple Model – Probabilistic Data Association (IMM-PDA) filter for tracking extended targets using random matrices is proposed. Unlike the extended target trackers in the literature which use multiple alternative partitionings/clusterings of the set of measurements, the algorithm proposed here considers a single partitioning/clustering of the measurement data which makes it suitable for applications with low computational resources. When the IMM-PDA filter uses clustered mea...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Hacızade and H. E. Söken, “Robust Adaptive Kalman Filter for estimation of UAV dynamics in the presence of sensor/actuator faults,”
AEROSPACE SCIENCE AND TECHNOLOGY
, pp. 376–383, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69762.