Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fault tolerant attitude estimation for pico satellites using robust adaptive UKF
Date
2012-10-09
Author
Söken, Halil Ersin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
220
views
0
downloads
Cite This
Unscented Kalman Filter (UKF) is a filtering algorithm which gives sufficiently good estimation results for estimation problems of nonlinear systems even when high nonlinearity is in question. However, in case of system uncertainty or measurements malfunctions the UKF becomes to be inaccurate and diverges by time. This study, introduces a fault tolerant attitude estimation algorithm for pico satellites. The algorithm uses a Robust Adaptive Unscented Kalman Filter (RAUKF) which performs correction for process noise covariance (Q-adaptation) or measurement noise covariance (R-adaptation) depending on the type of the fault. By the use of a newly proposed adaptation scheme for the conventional UKF algorithm, the fault is detected; isolated and the essential adaptation procedure is followed in accordance with the fault type. The proposed algorithm is tested as a part of the attitude estimation algorithm of a pico satellite, a satellite type for which computational convenience is necessary because of the design limitations. © 2012 IFAC.
URI
https://hdl.handle.net/11511/69788
DOI
https://doi.org/10.3182/20120829-3-mx-2028.00064
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Adaptive Fading UKF with Q-Adaptation: Application to Picosatellite Attitude Estimation
Söken, Halil Ersin (American Society of Civil Engineers (ASCE), 2013-07-01)
The unscented Kalman filter (UKF) is a filtering algorithm that gives sufficiently good estimation results for estimation problems of nonlinear systems even when high nonlinearity is in question. However, in the case of system uncertainty the UKF becomes inaccurate and diverges in time. In other words, if any change occurs in the process noise covariance, which is known a priori, the filter fails. This study introduces a novel adaptive fading UKF algorithm based on the correction of process noise covariance...
Robust adaptive unscented Kalman filter for attitude estimation of pico satellites
Hacızade, Cengiz; Söken, Halil Ersin (Wiley, 2014-02-01)
Unscented Kalman filter (UKF) is a filtering algorithm that gives sufficiently good estimation results for the estimation problems of nonlinear systems even when high nonlinearity is in question. However, in case of system uncertainty or measurement malfunctions, the UKF becomes inaccurate and diverges by time. This study introduces a fault-tolerant attitude estimation algorithm for pico satellites. The algorithm uses a robust adaptive UKF, which performs correction for the process noise covariance (Q-adapt...
Reconfigurable UKF for in-flight magnetometer calibration and attitude parameter estimation
Söken, Halil Ersin (2011-01-01)
In this study a reconfigurable unscented Kalman filter (UKF) based algorithm for the estimation of magnetometer biases and scale factors is proposed as a part of the attitude estimation scheme of a pico satellite. Algorithm is composed of two stages; in first stage UKF estimates magnetometer biases and scale factors as well as six attitude parameters of the satellite. Differently from the existing algorithms, scale factors are not treated together with the other parameters as a part of the state vector; thr...
Estimation of pico-satellite attitude dynamics and external torques via Unscented Kalman Filter
Söken, Halil Ersin (FapUNIFESP (SciELO), 2014-01-01)
In this study, an Unscented Kalman Filter (UKF) algorithm is designed for estimating the attitude of a picosatellite and the in-orbit external disturbance torques. The estimation vector is formed by the satellite's attitude, angular rates, and the unknown constant components of the external disturbance torques acting on the satellite. The gravity gradient torque, residual magnetic moment, sun radiation pressure and aerodynamic drag are all included in the estimated external disturbance torque vector. The sa...
Fault tolerant estimation of autonomous underwater vehicle dynamics via robust UKF
Hajiyev, Chingiz; Ata, Melih; Dinc, Mustafa; Söken, Halil Ersin (2012-07-30)
This article is basically focused on application of the Unscented Kalman Filter (UKF) algorithm to the estimation of high speed an autonomous underwater vehicle (AUV) dynamics. In the normal operation conditions of AUV, conventional UKF gives sufficiently good estimation results. However, if the measurements are not reliable because of any kind of malfunction in the estimation system, UKF gives inaccurate results and diverges by time. This study, introduces Robust Unscented Kalman Filter (RUKF) algorithms w...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. E. Söken, “Fault tolerant attitude estimation for pico satellites using robust adaptive UKF,” 2012, vol. 8, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/69788.