Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation
Date
2019-02-01
Author
El-Atwani, O.
Esquivel, E.
Aydoğan Güngör, Eda
Martinez, E.
Baldwin, J. K.
Li, M.
Uberuaga, B. P.
Maloy, S. A.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
166
views
0
downloads
Cite This
Nanocrystalline metals are often postulated as irradiation tolerant materials due to higher grain boundary densities. The efficiency of these materials in mitigating irradiation damage is still under investigation. Here, we present an in-situ transmission electron microscopy with ion irradiation study on equiaxed 35 nm grained tungsten (NCW-35 nm) and compare its radiation tolerance, in terms of dislocation loop damage, to several other grades of tungsten with different grain sizes at two temperatures (RT and 1073 K). The NCW-35 nm was shown to possess significant higher radiation tolerance in terms of loop damage. As demonstrated by Kinetic Monte Carlo simulations, at least part of the higher radiation tolerance of the small grains is due to higher interstitial storage (at the grain boundaries) and defect recombination (in the grain interiors) in the small grain material. In addition, experimental observations reveal rapid and efficient dislocation loop absorption by the grain boundaries and this is considered the dominant factor for mass transport to the boundaries during irradiation, enabling the remarkable radiation tolerance of 35 nm grained tungsten. This study demonstrates the possibility of attaining high radiation tolerant materials, in terms of dislocation loop damage, by minimizing grain sizes in the nanocrystalline regime. Published by Elsevier Ltd on behalf of Acta Materialia Inc.
Subject Keywords
Electronic, Optical and Magnetic Materials
,
Polymers and Plastics
,
Metals and Alloys
,
Ceramics and Composites
URI
https://hdl.handle.net/11511/69916
Journal
ACTA MATERIALIA
DOI
https://doi.org/10.1016/j.actamat.2018.11.024
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
High temperature microstructural stability and recrystallization mechanisms in 14YWT alloys
Aydoğan Güngör, Eda; Takajo, S.; Vogel, S. C.; Maloy, S. A. (Elsevier BV, 2018-04-01)
In-situ neutron diffraction experiments were performed on room temperature compressed 14YWT nanostructured ferritic alloys at 1100 degrees C and 1150 degrees C to understand their thermally activated static recrystallization mechanisms. Existence of a high density of Y-Ti-O rich nano-oxides ( and {112} texture components during annealing, in contrast to the conventional recrystallization textures in body centered cubic alloys. Furthermore, nano-oxide size, shape, density and distribution are considerably di...
Temperature dependent dispersoid stability in ion-irradiated ferritic-martensitic dual-phase oxide-dispersion-strengthened alloy: Coherent interfaces vs. incoherent interfaces
Chen, Tianyi; Gigax, Jonathan G.; Price, Lloyd; Chen, Di; Ukai, S.; Aydoğan Güngör, Eda; Maloy, S. A.; Garner, F. A.; Shao, Lin (Elsevier BV, 2016-09-01)
In this study, the microstructure of a 12Cr ferritic-martensitic oxide-dispersion-strengthened (ODS) alloy is studied before and after Fe ion irradiation up to 200 peak displacements per atom (dpa). Irradiation temperature ranges from 325 to 625 degrees C. Before irradiation, both coherent and incoherent dispersoids exist in the matrix. In response to irradiation, the mean sizes of dispersoids in both the ferrite and tempered martensite phases change to equilibrium values that increase with irradiation temp...
Detailed transmission electron microscopy study on the mechanism of dislocation loop rafting in tungsten
El-Atwani, O.; Aydogan, E.; Esquivel, E.; Efe, Mert; Wang, Y. Q.; Maloy, S. A. (Elsevier BV, 2018-04-01)
Dislocation loop rafting and dislocation decoration have been previously observed in neutron and heavy ion irradiated materials. Understanding the fundamental aspects of these phenomena assist in evaluating irradiation damage of nuclear materials. Multiple different mechanisms have been suggested to explain loop rafting. Here, we performed a detailed transmission electron microscopy study on dislocation loop rafts in heavy ion irradiated tungsten. Different imaging conditions showed that the rafts are of B...
Mechanical, thermal and rheological characterization of polystyrene/organoclay nanocomposites containing aliphatic elastomer modifiers
Dike, Ali Sinan; Yılmazer, Ülkü (IOP Publishing, 2020-01-01)
In this study, organoclay containing polystyrene (PS) based nanocomposites were prepared by extrusion in the presence of aliphatic elastomer modifiers. Three different types of aliphatic elastomeric materials and three different types of organoclays were used. Their effects on the morphology, and mechanical, thermal, and rheological properties of PS were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD), tensile and impact tests, different...
Nano-scale phase separation in amorphous Fe-B alloys: Atomic and cluster ordering
AYKOL, Muratahan; Mehrabov, Amdulla; Akdeniz, Mahmut Vedat (Elsevier BV, 2009-01-01)
Nano-scale phase separation encountered in metallic glasses is investigated for amorphous Fe80B20 and Fe83B17 alloys in an interaction field calculated via electronic theory of alloys in pseudopotential approximation combined with MC equilibration and reverse MC simulation. The phenomenon is identified regarding three topological aspects: (1) pure Fe-clusters as large as similar to 0.9 nm and pure Fe-contours similar to 0.72 nm thick are found to exist; (2) Fe-rich highly deformed-bcc regions are observed; ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. El-Atwani et al., “Unprecedented irradiation resistance of nanocrystalline tungsten with equiaxed nanocrystalline grains to dislocation loop accumulation,”
ACTA MATERIALIA
, pp. 118–128, 2019, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/69916.