Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Ruthenium(0) nanoparticles stabilized by metal-organic framework (ZIF-8): Highly efficient catalyst for the dehydrogenation of dimethylamine-borane and transfer hydrogenation of unsaturated hydrocarbons using dimethylamine-borane as hydrogen source
Date
2014-11-01
Author
Yurderi, Mehmet
Bulut, Ahmet
Zahmakıran, Mehmet
Gülcan, Mehmet
Özkar, Saim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
147
views
0
downloads
Cite This
Ruthenium(0) nanoparticles supported on zeolitic imidazolate framework (ZIF-8), RuNPs/ZIF-8, were reproducibly prepared by borohydride reduction of RuCl3/ZIF-(8) precatalyst in water at room temperature. The characterization of the dehydrated RuNPs/ZIF-8 was done by a combination of complimentary techniques, which reveals that the formation of well-dispersed ruthenium(0) nanoparticles (1.9 +/- 0.6 nm) on the surface of ZIF-8 by keeping the host framework intact. The catalytic activity of RuNPs/ZIF-8 was firstly tested in the dehydrogenation of dimethylamine-borane ((CH3)(2)NHBH3) in toluene. We found that ruthenium(0) nanoparticles supported on ZIF-8 can catalyze the dehydrogenation of dimethylamineborane with an initial TOF value of 59 min(-1) at 40 degrees C. Additionally, RuNPs/ZIF-8 catalyze the transfer hydrogenation of various unsaturated substrates in the presence of dimethylamine borane as hydrogen source even at low catalyst loadings. More importantly, they show high durability against leaching and sintering throughout the catalytic runs, which make them reusable catalyst in these important catalytic transformations. (C) 2014 Elsevier B.V. All rights reserved.
Subject Keywords
Process Chemistry and Technology
,
General Environmental Science
,
Catalysis
URI
https://hdl.handle.net/11511/70017
Journal
APPLIED CATALYSIS B-ENVIRONMENTAL
DOI
https://doi.org/10.1016/j.apcatb.2014.06.009
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Rhodium(0) nanoparticles supported on nanosilica: Highly active and long lived catalyst in hydrogen generation from the methanolysis of ammonia borane
Ozhava, Derya; Özkar, Saim (Elsevier BV, 2016-02-01)
Nanosilica stabilized rhodium(0) nanoparticles (Rh(0)/nanoSiO(2)), in situ formed from the reduction of rhodium(II) octanoate impregnated on the surface of nanosilica, are active catalyst in hydrogen generation from the methanolysis of ammonia borane at room temperature. Monitoring the hydrogen evolution enables us to follow the kinetics of nanoparticles formation. The resulting sigmoidal kinetic curves are analyzed by using the 2-step mechanism of the slow, continuous nucleation and autocatalytic surface g...
Nanoceria supported palladium(0) nanoparticles: Superb catalyst in dehydrogenation of formic acid at room temperature
Akbayrak, Serdar; TONBUL, YALÇIN; Özkar, Saim (Elsevier BV, 2017-06-05)
Highly efficient dehydrogenation of formic acid (FA) at room temperature was achieved using palladium(0) nanoparticles supported on nanoceria (Pd-0/CeO2) as catalysts. Pd-0/CeO2 was prepared by impregnation of palladium(II) ions on the surface of ceria followed by their reduction with sodium borohydride in aqueous solution at room temperature. Pd((0)/CeO2 was isolated from the reaction solution by centrifugation and characterized by a combination of advanced analytical techniques. The catalytic activity of ...
Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: A highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane
Akbayrak, Serdar; KAYA, MURAT; Volkan, Mürvet; Özkar, Saim (Elsevier BV, 2014-04-05)
Palladium(0) nanoparticles supported on silica-coated cobalt ferrite (Pd(0)/SiO2-CoFe2O4) were in situ generated during the hydrolysis of ammonia borane, isolated from the reaction solution by using a permanent magnet and characterized by ICP-OES, XRD, TEM, TEM-EDX, XPS and the N-2 adsorption-desorption techniques. All the results reveal that well dispersed palladium(0) nanoparticles were successfully supported on silica coated cobalt ferrite and the resulting Pd(0)/SiO2-CoFe2O4 are highly active, magnetica...
Ruthenium(0) nanoparticles supported on magnetic silica coated cobalt ferrite: Reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane
Akbayrak, Serdar; KAYA, MURAT; Volkan, Mürvet; Özkar, Saim (Elsevier BV, 2014-11-15)
Ruthenium(0) nanoparticles supported on magnetic silica-coated cobalt ferrite (Ru(0)/SiO2-CoFe2O4) were in situ generated from the reduction of Ru3+/SiO2-CoFe2O4 during the catalytic hydrolysis of ammonia-borane (AB). Ruthenium(III) ions were impregnated on SiO2-CoFe2O4 from the aqueous solution of ruthenium(III) chloride and then reduced by AB at room temperature yielding Ru(0)/SiO2-CoFe2O4 which were isolated from the reaction solution by using a permanent magnet and characterized by ICP-OES, XRD, TEM, TE...
Palladium(0) nanoparticles supported on polydopamine coated CoFe2O4 as highly active, magnetically isolable and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane
Manna, Joydev; Akbayrak, Serdar; Özkar, Saim (Elsevier BV, 2017-07-05)
Palladium(0) nanoparticles supported on cobalt ferrite (Pd degrees/CoFe2O4) are found to be highly active catalyst, providing an unprecedented catalytic activity with a turnover frequency of 290 min(-1) in hydrogen generation from the hydrolysis of ammonia borane at room temperature. However, the initial catalytic activity of Pd degrees/CoFe2O4 catalyst is not preserved after the reuse of the catalyst in hydrolytic dehydrogenation of ammonia borane. The stability of the catalyst is improved by using the pol...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Yurderi, A. Bulut, M. Zahmakıran, M. Gülcan, and S. Özkar, “Ruthenium(0) nanoparticles stabilized by metal-organic framework (ZIF-8): Highly efficient catalyst for the dehydrogenation of dimethylamine-borane and transfer hydrogenation of unsaturated hydrocarbons using dimethylamine-borane as hydrogen source,”
APPLIED CATALYSIS B-ENVIRONMENTAL
, pp. 534–541, 2014, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/70017.