Computational Geometry

2011

Suggestions

Computational complexity analysis of two target tracking algorithms
Çiydem, Mehmet; Demirbaş, Kerim; Department of Electrical and Electronics Engineering (1995)
Computational fluid dynamics modelling of store separation using grid method
Demir, Görkem; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2017)
In this study, two different wind tunnel techniques, captive trajectory and the grid surveying method, were implemented to computational fluid dynamics (CFD) and used to calculate the trajectory of a store. The main purpose of this thesis is to demonsrate that grid method is an alternative method to those already used as it provides flexibility to store separation problems and can be used during the design process. EGLIN test geometry was used to validate the analyses results because it provided existing wi...
Computational fluid dynamics analysis of store seperation
Demir, H. Özgür; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2004)
In this thesis, store separation from two different configurations are solved using computational methods. Two different commercially available CFD codes; CFD-FASTRAN, an implicit Euler solver, and an unsteady panel method solver USAERO, coupled with integral boundary layer solution procedure are used for the present computations. The computational trajectory results are validated against the available experimental data of a generic wing-pylon-store configuration at Mach 0.95. Major trends of the separation...
Computational Electromagnetic Analysis of Deformed Nanowires Using the Multilevel Fast Multipole Algorithm
Yilmaz, Akif; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2015-02-16)
We consider computational analysis of deformed nanowires and their arrays using a full-wave simulation environment based on integral-equation formulations and the multilevel fast multipole algorithm (MLFMA). Without requiring any periodicity assumptions, MLFMA allows for fast and accurate simulations of complex nanowire structures with three-dimensional geometries and random deformations. We present the results of hundreds of simulations, where deformed nanowires are considered as isolated, as well as in ar...
Computational fluid dynamics and proper orthogonal decomposition based control of flow over supersonic cavities
Gelisli, Kubra Asena; Aradag, Selin; Tascioglu, Yigit; Özer, Mehmet Bülent (2019-01-01)
© 2019, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.A Computational Fluid Dynamics (CFD) study is conducted to investigate the unsteady, turbulent supersonic cavity flow characteristics and to control the severe effects of the flow field. Simulations of Mach 1.5 supersonic cavity flow with a length to depth ratio of 5.07 are performed using commercial ANSYS Fluent solver. Unsteady density-based Reynolds Averaged Navier-Stokes equations are modeled with standard k-ω turb...
Citation Formats
T. Can, “Computational Geometry,” 00, 2011, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/70074.